# 将iMessage聊天记录转化为AI聊天数据:从数据抽取到模型微调的完整指南
## 引言
iMessage是苹果设备用户广泛使用的即时通讯工具,很多用户会希望将其聊天记录用于AI模型训练,例如,微调生成式预训练模型以适应自己的对话风格。这篇文章将详细介绍如何利用`IMessageChatLoader`工具,提取iMessage数据,将其转换为可用于LangChain的聊天记录,并最终实现模型的微调。
## 主要内容
### 1. 访问iMessage数据库
iMessage的对话记录保存在macOS系统的SQLite数据库中,路径为`~/Library/Messages/chat.db`。在操作之前,可能需要将数据库文件复制到方便访问的目录(如Documents),因为默认情况下,终端无法直接访问这个路径。或者,您可以在系统设置中为终端应用程序授予完全磁盘访问权限,但这并不是推荐的做法。
### 2. 下载示例数据库
我们准备了一个示例数据库,您可以通过以下代码下载该文件:
```python
import requests
def download_drive_file(url: str, output_path: str = "chat.db") -> None:
file_id = url.split("/")[-2]
download_url = f"https://drive.google.com/uc?export=download&id={file_id}"
response = requests.get(download_url)
if response.status_code != 200:
print("Failed to download the file.")
return
with open(output_path, "wb") as file:
file.write(response.content)
print(f"File {output_path} downloaded.")
url = "https://drive.google.com/file/d/1NebNKqTA2NXApCmeH6mu0unJD2tANZzo/view?usp=sharing"
download_drive_file(url)
3. 创建Chat Loader
使用IMessageChatLoader
类来加载聊天记录:
from langchain_community.chat_loaders.imessage import IMessageChatLoader
loader = IMessageChatLoader(
path="./chat.db", # 指定聊天数据库的路径
)
4. 加载和转换消息
通过调用load()
或lazy_load()
函数来加载并转换消息:
from typing import List
from langchain_community.chat_loaders.utils import map_ai_messages, merge_chat_runs
from langchain_core.chat_sessions import ChatSession
raw_messages = loader.lazy_load()
merged_messages = merge_chat_runs(raw_messages) # 合并同一发送者的连续消息
chat_sessions: List[ChatSession] = list(
map_ai_messages(merged_messages, sender="Tortoise") # 将特定发送者标记为AI消息
)
5. 准备进行微调
将聊天信息转换为OpenAI格式:
from langchain_community.adapters.openai import convert_messages_for_finetuning
training_data = convert_messages_for_finetuning(chat_sessions)
print(f"Prepared {len(training_data)} dialogues for training")
6. 微调模型
确保您已安装OpenAI包并设置了OPENAI_API_KEY
:
import json
import time
from io import BytesIO
import openai
# 将JSONL文件写入内存
my_file = BytesIO()
for m in training_data:
my_file.write((json.dumps({"messages": m}) + "\n").encode("utf-8"))
my_file.seek(0)
training_file = openai.files.create(file=my_file, purpose="fine-tune")
status = openai.files.retrieve(training_file.id).status
start_time = time.time()
while status != "processed":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
status = openai.files.retrieve(training_file.id).status
print(f"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.")
job = openai.fine_tuning.jobs.create(
training_file=training_file.id,
model="gpt-3.5-turbo",
)
7. 在LangChain中使用模型
使用微调后的模型:
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
model = ChatOpenAI(
model=job.fine_tuned_model,
temperature=1,
)
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are speaking to hare."),
("human", "{input}"),
]
)
chain = prompt | model | StrOutputParser()
for tok in chain.stream({"input": "What's the golden thread?"}):
print(tok, end="", flush=True)
常见问题和解决方案
问题1:终端无法访问chat.db
- 解决方案:将数据库文件复制到可访问的目录,或授予终端访问权限。
问题2:API访问不稳定
- 解决方案:使用API代理服务以提高访问的稳定性。
总结与进一步学习资源
在本文中,我们讨论了如何提取iMessage聊天记录,并将其用于AI模型的微调。这一过程涉及数据抽取、转换和微调多个步骤。如果您希望深入了解LangChain和OpenAI,请访问以下资源:
参考资料
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---