从文本到知识库:构建你的知识图谱指南

## 引言

在当今数据驱动的世界中,知识图谱成为组织和分析信息的强大工具。此文章旨在指导您从非结构化文本中构建知识图谱,这些图谱随后可以用作RAG(检索增强生成)应用程序中的知识库。我们将使用Neo4j图数据库来存储和管理图谱数据。在此过程中,我们也会讨论潜在的挑战及其解决方案。

⚠️ 安全注意:在构建知识图谱时,需要对数据库进行写操作,这存在一定的风险。在导入数据之前,请确保验证和验证数据。有关一般安全最佳实践,请参阅[这里](#) 。

## 主要内容

### 1. 构建知识图谱的步骤

1. 从文本中提取结构化信息:使用模型从文本中提取结构化图谱信息。
2. 存储到图数据库:将提取的图谱信息存储到图数据库中,以供下游RAG应用程序使用。

### 2. 设置环境

首先,获取所需的软件包并设置环境变量。本例中,我们将使用Neo4j图数据库。

```bash
%pip install --upgrade --quiet langchain langchain-community langchain-openai langchain-experimental neo4j

注意: 您可能需要重新启动内核以使用更新的软件包。

我们在本指南中默认使用OpenAI模型。

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()

然后,我们需要定义Neo4j凭据和连接。请按照这些安装步骤设置Neo4j数据库。

from langchain_community.graphs import Neo4jGraph

os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"

graph = Neo4jGraph()

3. 使用LLM进行图转换

使用大语言模型(LLM)从文本中提取图谱数据可以将非结构化信息转换为结构化格式。LLMGraphTransformer通过解析和分类实体及其关系,将文本文档转换为结构化图文档。

from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(temperature=0, model_name="gpt-4-turbo")

llm_transformer = LLMGraphTransformer(llm=llm)

4. 图谱构建示例

以下是构建知识图谱的Python代码示例:

from langchain_core.documents import Document

text = """
Marie Curie, born in 1867, was a Polish and naturalised-French physicist and chemist who conducted pioneering research on radioactivity.
She was the first woman to win a Nobel Prize, the first person to win a Nobel Prize twice, and the only person to win a Nobel Prize in two scientific fields.
Her husband, Pierre Curie, was a co-winner of her first Nobel Prize, making them the first-ever married couple to win the Nobel Prize and launching the Curie family legacy of five Nobel Prizes.
She was, in 1906, the first woman to become a professor at the University of Paris.
"""
documents = [Document(page_content=text)]
graph_documents = llm_transformer.convert_to_graph_documents(documents)
print(f"Nodes:{graph_documents[0].nodes}")
print(f"Relationships:{graph_documents[0].relationships}")

5. 存储到图数据库

graph.add_graph_documents(graph_documents)

常见问题和解决方案

  1. 节点和关系定义: 您可以根据特定需求定义要提取的节点和关系类型。
  2. 非确定性输出: 由于使用LLM,图谱构建过程可能会得到不同的结果。确保在需要时进行后处理和验证。

总结与进一步学习资源

可能的挑战包括从复杂文本中提取准确的关系,以及确保大规模数据的存储效率。通过使用API代理服务(例如在某些地区的网络限制下调用API时),可以提高访问稳定性。

进一步学习建议:

参考资料

  1. Neo4j 安装指南
  2. OpenAI API 参考
  3. LangChain 文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值