## 引言
在当今数据驱动的世界中,知识图谱成为组织和分析信息的强大工具。此文章旨在指导您从非结构化文本中构建知识图谱,这些图谱随后可以用作RAG(检索增强生成)应用程序中的知识库。我们将使用Neo4j图数据库来存储和管理图谱数据。在此过程中,我们也会讨论潜在的挑战及其解决方案。
⚠️ 安全注意:在构建知识图谱时,需要对数据库进行写操作,这存在一定的风险。在导入数据之前,请确保验证和验证数据。有关一般安全最佳实践,请参阅[这里](#) 。
## 主要内容
### 1. 构建知识图谱的步骤
1. 从文本中提取结构化信息:使用模型从文本中提取结构化图谱信息。
2. 存储到图数据库:将提取的图谱信息存储到图数据库中,以供下游RAG应用程序使用。
### 2. 设置环境
首先,获取所需的软件包并设置环境变量。本例中,我们将使用Neo4j图数据库。
```bash
%pip install --upgrade --quiet langchain langchain-community langchain-openai langchain-experimental neo4j
注意: 您可能需要重新启动内核以使用更新的软件包。
我们在本指南中默认使用OpenAI模型。
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
然后,我们需要定义Neo4j凭据和连接。请按照这些安装步骤设置Neo4j数据库。
from langchain_community.graphs import Neo4jGraph
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"
graph = Neo4jGraph()
3. 使用LLM进行图转换
使用大语言模型(LLM)从文本中提取图谱数据可以将非结构化信息转换为结构化格式。LLMGraphTransformer
通过解析和分类实体及其关系,将文本文档转换为结构化图文档。
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0, model_name="gpt-4-turbo")
llm_transformer = LLMGraphTransformer(llm=llm)
4. 图谱构建示例
以下是构建知识图谱的Python代码示例:
from langchain_core.documents import Document
text = """
Marie Curie, born in 1867, was a Polish and naturalised-French physicist and chemist who conducted pioneering research on radioactivity.
She was the first woman to win a Nobel Prize, the first person to win a Nobel Prize twice, and the only person to win a Nobel Prize in two scientific fields.
Her husband, Pierre Curie, was a co-winner of her first Nobel Prize, making them the first-ever married couple to win the Nobel Prize and launching the Curie family legacy of five Nobel Prizes.
She was, in 1906, the first woman to become a professor at the University of Paris.
"""
documents = [Document(page_content=text)]
graph_documents = llm_transformer.convert_to_graph_documents(documents)
print(f"Nodes:{graph_documents[0].nodes}")
print(f"Relationships:{graph_documents[0].relationships}")
5. 存储到图数据库
graph.add_graph_documents(graph_documents)
常见问题和解决方案
- 节点和关系定义: 您可以根据特定需求定义要提取的节点和关系类型。
- 非确定性输出: 由于使用LLM,图谱构建过程可能会得到不同的结果。确保在需要时进行后处理和验证。
总结与进一步学习资源
可能的挑战包括从复杂文本中提取准确的关系,以及确保大规模数据的存储效率。通过使用API代理服务(例如在某些地区的网络限制下调用API时),可以提高访问稳定性。
进一步学习建议:
参考资料
- Neo4j 安装指南
- OpenAI API 参考
- LangChain 文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---