集成NVIDIA NIMs与LangChain:提升AI应用的极致性能
引言
在现代AI应用的发展中,快速和高效的推理服务日益重要。NVIDIA NIM(NVIDIA Inference Microservice)通过提供优化的模型和易于使用的容器化部署,正迅速成为企业应用中的重要工具。本篇文章将探讨如何利用langchain-nvidia-ai-endpoints
包与NVIDIA NIMs集成,以构建高性能AI应用。
主要内容
什么是NVIDIA NIMs?
NVIDIA NIMs(推理微服务)是为NVIDIA加速基础设施优化的AI模型,这些模型包装在易于部署的NIM容器中。通过NVIDIA的API目录,开发者可以测试模型并将其部署到本地或云端。
NVIDIA Embeddings类的使用
langchain-nvidia-ai-endpoints
包提供了NVIDIAEmbeddings
类,便于在嵌入模型中运行推理任务。通过与LangChain的结合,开发者能轻松实现检索增强生成(RAG)应用。
初始化和配置
安装所需的软件包:
%pip install --upgrade --quiet langchain-nvidia-ai-endpoints
获取API访问权限并配置环境:
import getpass
import os
if os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"):
print("Valid NVIDIA_API_KEY already in environment. Delete to reset")
else:
nvapi_key = getpass.getpass("NVAPI Key (starts with nvapi-): ")
assert nvapi_key.startswith("nvapi-"), f"{nvapi_key[:5]}... is not a valid key"
os.environ["NVIDIA_API_KEY"] = nvapi_key
嵌入和相似性计算
使用NVIDIAEmbeddings
类实现嵌入和相似性计算:
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
embedder = NVIDIAEmbeddings(model="NV-Embed-QA") # 使用NVIDIA提供的QA嵌入模型
q_embeddings = embedder.embed_query("What's the weather like in Komchatka?")
d_embeddings = embedder.embed_documents(["Komchatka's weather is cold, with long, severe winters."])
部署NIMs
开发者可以通过NVIDIA AI Enterprise许可证自行托管NIM:
embedder = NVIDIAEmbeddings(base_url="http://localhost:8080/v1") # 使用API代理服务提高访问稳定性
代码示例
以下代码段展示了如何利用相似性计算模块来提升文档检索的效果:
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
cross_similarity_matrix = cosine_similarity(np.array(q_embeddings), np.array(d_embeddings))
plt.figure(figsize=(8, 6))
plt.imshow(cross_similarity_matrix, cmap="Greens", interpolation="nearest")
plt.colorbar()
plt.title("Cross-Similarity Matrix")
plt.xlabel("Query Embeddings")
plt.ylabel("Document Embeddings")
plt.grid(True)
plt.show()
常见问题和解决方案
-
上下文窗口限制: 嵌入模型有固定的上下文窗口限制,可能导致输入被截断。解决方案是使用NIMs的
truncate
参数来处理超长输入。 -
网络访问限制: 由于某些地区的网络限制,建议使用API代理服务来确保稳定的访问。
总结:进一步学习资源
为了更深入地了解NVIDIA NIM和LangChain的结合应用,建议查阅以下资源:
参考资料
- NVIDIA NIMs 官方文档
- LangChain API 参考
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—