使用Redis和OpenAI进行RAG:处理Nike财务10k文件

老铁们,今天我们来聊聊如何使用Redis作为向量数据库,结合OpenAI的语言模型来进行RAG(检索增强生成)操作,专注于处理Nike的财务10k文件。这个模板依赖于sentence-transformers/all-MiniLM-L6-v2进行文本的嵌入操作,不仅可以处理PDF文件的内容,还能回答用户的问题。

环境设置

首先,为了访问OpenAI模型,你需要设置OPENAI_API_KEY环境变量:

export OPENAI_API_KEY=<YOUR OPENAI API KEY>

接下来是Redis相关的环境变量,用于配置你的Redis服务器:

export REDIS_HOST=<YOUR REDIS HOST>
export REDIS_PORT=<YOUR REDIS PORT>
export REDIS_USER=<YOUR REDIS USER NAME>
export REDIS_PASSWORD=<YOUR REDIS PASSWORD>

支持的设置

我们可以通过各种环境变量来配置这个应用,以下是一些关键的配置项:

环境变量描述默认值
DEBUG启用或禁用LangChain调试日志True
REDIS_HOSTRedis服务器的主机名“localhost”
REDIS_PORTRedis服务器的端口6379
REDIS_USERRedis服务器的用户名“”
REDIS_PASSWORDRedis服务器的密码“”
REDIS_URL连接Redis的完整URL如果未提供,将从用户、密码、主机和端口构造
INDEX_NAME向量索引的名称“rag-redis”

使用方法

要使用这个包,首先需要在Python虚拟环境中安装LangChain CLI和Pydantic:

pip install -U langchain-cli pydantic==1.10.13

创建一个新的LangChain项目并将此作为唯一包安装:

langchain app new my-app --package rag-redis

如果你想将其添加到现有项目中,只需运行:

langchain app add rag-redis

并在你的app/server.py文件中添加以下代码片段:

from rag_redis.chain import chain as rag_redis_chain

add_routes(app, rag_redis_chain, path="/rag-redis")

(可选)我们来配置LangSmith,这将帮助我们追踪、监控和调试LangChain应用程序。你可以在这里注册LangSmith。如果没有访问权限,可以跳过这部分:

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>  # 如果未指定,默认为"default"

如果你在此目录下,可以直接启动一个LangServe实例:

langchain serve

这将启动一个本地运行的FastAPI应用,服务器地址为http://localhost:8000。你可以在http://127.0.0.1:8000/docs查看所有模板,并在http://127.0.0.1:8000/rag-redis/playground访问游乐场。同时,你可以通过如下代码从代码中访问模板:

from langserve.client import RemoteRunnable

runnable = RemoteRunnable("http://localhost:8000/rag-redis")

这波操作可以说是相当丝滑。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值