解析快手滑块验证码的逆向工程

快手滑块验证码是一种常见的反机器人验证方式,通过模拟用户拖动滑块来验证用户身份。本文将介绍如何逆向工程快手滑块验证码的加密算法和轨迹生成方式,并提供详细的代码实现。

1. 加密算法解析
首先,我们需要了解滑块验证码生成时所用的加密算法。根据逆向分析,我们知道快手滑块验证码采用了AES加密算法,但是在使用之前,需要进行一些参数的处理。
// 加密算法
c.a.encrypt(a, i.a.parse('djRkajFnMWxmZWtvZjhzeg=='), l({}, 'iv', i.a.parse('aHMyczhlb3A2cG42Y2Y4OQ=='))).toString()
在这个加密算法中,参数需要经过解析(parse)和字符串转换(toString)等处理。我们需要还原这个算法,以便在Python中进行相应的加密操作。

2. 轨迹生成方式
除了加密算法,快手滑块验证码还需要模拟用户的滑动轨迹,以通过验证。根据逆向分析,我们知道轨迹数组包含了滑块的x、y坐标和时间信息。在模拟轨迹时,我们需要考虑到加速度和曲线算法,以使模拟的轨迹更接近真实用户的行为。
// 轨迹生成
(relativeX - 5) / (315 - 40) * 1000
根据上述公式,我们可以计算出滑块移动的位移量,从而生成模拟的滑动轨迹。

3. 完整实现代码
现在,让我们将以上分析转化为Python代码,以实现快手滑块验证码的自动化识别和解答。
import requests
from Crypto.Cipher import AES
from Crypto.Util.Padding import pad
from base64 import b64decode, b64encode
import json

# 加密密钥和初始向量
key = b64decode('djRkajFnMWxmZWtvZjhzeg==')
iv = b64decode('aHMyczhlb3A2cG42Y2Y4OQ==')

# 加密函数
def encrypt(data):
    cipher = AES.new(key, AES.MODE_CBC, iv)
    ciphertext = cipher.encrypt(pad(data.encode(), AES.block_size))
    return b64encode(ciphertext).decode()

# 获取滑块验证码配置信息
def get_slider_captcha():
    url = 'https://captcha.zt.kuaishou.com/rest/zt/captcha/sliding/config'
    params = {'captchaSession': 'your_captcha_session'}
    response = requests.get(url, params=params)
    return response.json()

# 模拟滑动轨迹
def simulate_trajectory(relativeX):
    return (relativeX - 5) / (315 - 40) * 1000

# 主函数
def main():
    # 获取滑块验证码配置信息
    config = get_slider_captcha()
    relativeX = config['relativeX']
    trajectory = simulate_trajectory(relativeX)
    captcha_data = {
        'trajectory': trajectory,
        'relativeX': config['relativeX'],
        'relativeY': config['relativeY'],
        'captchaExtraParam': config['captchaExtraParam'],
        'gpuInfo': config['gpuInfo']
    }
    # 加密滑块验证码数据
    encrypted_data = encrypt(json.dumps(captcha_data))
    print("Encrypted Data:", encrypted_data)

if __name__ == "__main__":
    main()

如果上述代码遇到问题或已更新无法使用等情况可以联系Q:1436423940或直接访问www.ttocr.com测试对接(免费得哈)

### 实现快手滑块验证码自动化处理的技术方案 对于滑块验证码的自动化处理,通常涉及模拟人类行为以欺骗检测机制。针对快手平台或其他网站上的滑块验证,一种常见方法是利用`pyppeteer`库来操作浏览器并执行必要的动作[^3]。 #### 使用 Pyppeteer 和 Asyncio 处理滑块验证码 为了实现这一目标,可以采用Python中的异步框架如`asyncio`配合`pyppeteer`来进行页面交互。下面是一个简单的例子展示如何设置环境: ```python import asyncio from pyppeteer import launch async def main(): browser = await launch() page = await browser.newPage() await page.goto('https://www.example.com') # 替换成实际的目标网址 # 执行特定的操作比如点击按钮触发验证码加载 await page.click('#some-button') # 获取到滑块元素的位置信息 slider_handle = await page.querySelector('.slider') # 计算移动距离和路径规划(这里简化为直接指定偏移量) offset_x, offset_y = calculate_offset() # 移动鼠标至起始位置并按住左键不放 await page.mouse.move(x_start_position, y_start_position) await page.mouse.down() # 模拟拖拽过程 await page.mouse.move(offset_x, offset_y) # 松开鼠标按键完成拖拽 await page.mouse.up() await browser.close() def calculate_offset(): """计算需要拖动的距离""" pass # 此处应加入具体逻辑判断所需位移长度 # 启动事件循环运行main函数 asyncio.get_event_loop().run_until_complete(main()) ``` 上述代码片段展示了基本流程,但是请注意,在真实环境中还需要考虑更多细节,例如更精确地模仿用户的随机化运动模式以及应对可能存在的反作弊措施。 另外值得注意的是,许多在线服务提供商都在不断改进其安全策略,因此任何试图规避这些保护的行为都应当谨慎行事,并始终遵循法律法规和服务条款的要求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值