
机器学习
TTransposition
打杂
-
原创 mean shift 图像分割(三)
5 非参数密度估计2014-08-12 14:08:1610448
0
-
原创 机器学习基石笔记 Lecture 1: The Learning Problem
Lecture 1: The Learning Problemwhat is machine learning?人类的学习:2015-12-19 20:17:28998
0
-
原创 机器学习基石笔记 Lecture 3 - Types of Learning
Lecture 3 - Types of LearningLearning with Different Output Space2015-12-19 20:46:381021
0
-
原创 机器学习基石笔记 Lecture 2: Learning to Answer Yes/No
Lecture 2: Learning to Answer Yes/NoPerceptronA Simple Hypothesis Set: the ‘Perceptron’2015-12-19 20:31:551568
2
-
原创 LibSVM安装的问题
一、不兼容64位错误提示:libsvm 64-bit mex files using sparse matrices must be rebuilt with the "-largeArrayDims" option解决方法:将 make.m中 的 -o 全部替换成 -largeArrayDims最终结果如下:mex -largeArrayDims -c svm.cpp2013-09-10 21:28:371532
0
-
原创 SVM(支持向量机)- 基本思想(一)
SVM(支持向量机)- 基本思想 Referenc:Pluskid系列博客《Pattern recognition and machine learning》CM Bishop - 2006《convex optimization》SP Boyd, L Vandenberghe – 2004说明:本系列纯粹是pluskid博客的狗尾续貂之作,写下了只是想让自己踏2013-12-13 19:30:5514674
1
-
转载 Tutorial papers for MRF, CRF and DRF
From:http://www.cnblogs.com/cloudseawang/archive/2012/02/25/2367459.htmlIn this article I compile a list of good papers and tutorials related to MRFs, CRFs and DRFs. Hopefully you will find it usefu2013-12-22 20:50:052138
0
-
转载 ”图˙谱˙马尔可夫过程˙聚类结构 “---林达华
题目中所说到的四个词语,都是Machine Learning以及相关领域中热门的研究课题。表面看属于不同的topic,实际上则是看待同一个问题的不同角度。不少文章论述了它们之间的一些联系,让大家看到了这个世界的奇妙。从图说起这里面,最简单的一个概念就是“图”(Graph),它用于表示事物之间的相互联系。每个图有一批节点(Node),每个节点表示一个对象,通过一些边(Edge)把这些2014-04-01 13:20:561642
0
-
原创 Exemplar-SVMs for Object Detection and Beyond--Details (二)
对于分类问题,我们早已习惯,先分类标号,选择分类器训练,然后识别,根本没有想过还有没有其它方式。认知学的研究表明,大脑对于新事物的识别一个看"它像什么"的问题,而不是直接分类判断"它是什么"的问题。我们是通过和它最像的物体的信息来得知它是什么。英语中的recognition是re- cognition即再认知,再字即体现了参考先例的含义。本文基于这一思路提出了Exemplar-SVM,属于instance-based methods。2014-01-19 21:50:004288
0
-
原创 Exemplar-SVMs for Object Detection and Beyond—Overview(一)
对于分类问题,我们早已习惯,先分类标号,选择分类器训练,然后识别,根本没有想过还有没有其它方式。认知学的研究表明,大脑对于新事物的识别一个看"它像什么"的问题,而不是直接分类判断"它是什么"的问题。我们是通过和它最像的物体的信息来得知它是什么。英语中的recognition是re- cognition即再认知,再字即体现了参考先例的含义。本文基于这一思路提出了Exemplar-SVM,属于instance-based methods。2014-01-19 21:31:226852
0
-
原创 SVM- Lagrange duality(三)
SVM(3)- Lagrange dualityReferenc:Pluskid系列博客,Liqizhou 《Pattern recognition and machine learning》CM Bishop - 2006《convex optimization》SP Boyd, L Vandenberghe – 2004说明:本系列纯粹是2013-12-19 10:10:542562
0
-
原创 12306 图形验证码闲谈
验证码是一个非常有意思的问题,它的目的是区分输入者是人还是机器,这个问题本质上是一个图灵测试(推荐电影《模仿游戏》),验证码即是一种简单高效的验证方法,由CMU的教授于2000年左右创造,后来此牛人又将零星的验证码收集起来,转化为巨大的生产力,成功将上千万篇纸质文章数字化,目前Google还用其识别门牌号,路牌等(一个神人创造了验证码,又让验证码做出了巨大贡献)。12306昨天改用了图形验证码,而事实上,图形验证码已经不是新鲜事了,早在几个月钱,Google就换成了图形验证(谷歌让验证码更简单),这次咱们分2015-03-17 19:56:202540
0