协方差:任意两个变量的X和Y的协方差,记做:cov(X,Y)=E{ [X-E(X)] [Y-E(Y)] } ;
其性质有
1) Cov(X,Y)=Cov(Y,X);
2) Cov(aX,bY)=abCov(X,Y) ; a,b是常数
3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y);
4)若X,Y不相关,则Cov(X,Y)=0; (注:不相关不一定不独立,独立一定不相关)
协方差的简化求法是:cov(X,Y)=E(XY)-E(X)E(Y);
随机变量和的方差与协方差之间的关系式: D(X+Y)=D(X)+D(Y)+2Cov(X,Y)
将协方差标准化就得到相关系数
协方差矩阵 相关资料网址 :http://wenku.baidu.com/view/c5a2f3a2f524ccbff12184ba.html
多维正态密度函数 相关资料网址http://wenku.baidu.com/view/c639e884a0116c175f0e48e9.html
事情还没有发生,要求这件事情发生的可能性的大小,是先验概率。
事情已经发生,要求这件事情发生的原因是由某个因素引擎的可能性的大小,是后验概率。