Conception

协方差:任意两个变量的X和Y的协方差,记做:cov(X,Y)=E{ [X-E(X)] [Y-E(Y)] }  ;

其性质有

 1) Cov(X,Y)=Cov(Y,X);

2) Cov(aX,bY)=abCov(X,Y) ; a,b是常数

3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y);

4)若X,Y不相关,则Cov(X,Y)=0;   (注:不相关不一定不独立,独立一定不相关)

  协方差的简化求法是cov(X,Y)=E(XY)-E(X)E(Y);

 随机变量和的方差与协方差之间的关系式: D(X+Y)=D(X)+D(Y)+2Cov(X,Y)

协方差标准化就得到相关系数

协方差矩阵 相关资料网址 :http://wenku.baidu.com/view/c5a2f3a2f524ccbff12184ba.html


多维正态密度函数  相关资料网址http://wenku.baidu.com/view/c639e884a0116c175f0e48e9.html


事情还没有发生,要求这件事情发生的可能性的大小,是先验概率。

事情已经发生,要求这件事情发生的原因是由某个因素引擎的可能性的大小,是后验概率。


【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值