weixin_30735391
码龄7年
  • 649,149
    被访问
  • 暂无
    原创
  • 857,166
    排名
  • 85
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2015-08-20
博客简介:

weixin_30735391的博客

查看详细资料
个人成就
  • 获得160次点赞
  • 内容获得0次评论
  • 获得930次收藏
创作历程
  • 642篇
    2019年
  • 763篇
    2018年
  • 695篇
    2017年
  • 519篇
    2016年
  • 412篇
    2015年
  • 331篇
    2014年
  • 296篇
    2013年
  • 239篇
    2012年
  • 149篇
    2011年
  • 105篇
    2010年
  • 80篇
    2009年
  • 70篇
    2008年
  • 41篇
    2007年
  • 44篇
    2006年
  • 17篇
    2005年
  • 7篇
    2004年
成就勋章
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

linux虚拟化简介

为跨平台而生  在计算机发展的早期,各类计算平台、计算设备所提供的接口、调用方式纷繁复杂,没有像今天这样相对统一的标准。由于需要适配不同的平台,需要写很多繁琐的兼容代码,这无形中给开发者带来了很大的不便。甚至,这种混乱出现在 IBM 这一家公司下不同机型的机器上,所以 IBM 的工程师们创造了虚拟化技术,用来帮助程序快速适配不同平台的物理机器。  我们知道程序对计算机资源的调用主...
转载
发布博客 2019.09.26 ·
186 阅读 ·
0 点赞 ·
0 评论

从几个简单例子谈随机优化技术

1. 关于随机优化(stochastic optimization)随机优化技术常被用来处理协作类问题,它特别擅长处理:受多种变量的影响,存在许多可能解的问题,以及结果因这些变量的组合而产生很大变化的问题。例如:在物理学中,研究分子的运动在生物学中,预测蛋白质的结构在计算机科学中,预测算法的最坏可能运行时间NASA甚至使用优化技术来设计具有正确操作特性的天线,而这...
转载
发布博客 2019.09.09 ·
359 阅读 ·
0 点赞 ·
0 评论

遗传编程(GA,genetic programming)算法初探,以及用遗传编程自动生成符合题解的正则表达式的实践...

1. 遗传编程简介0x1:什么是遗传编程算法,和传统机器学习算法有什么区别传统上,我们接触的机器学习算法,都是被设计为解决某一个某一类问题的确定性算法。对于这些机器学习算法来说,唯一的灵活性体现在参数搜索空间上,向算法输入样本,算法借助不同的优化手段,对参数进行调整,以此来得到一个对训练样本和测试样本的最佳适配参数组。遗传编程算法完全走了另一外一条路,遗传编程算法的目标是编写...
转载
发布博客 2019.09.25 ·
982 阅读 ·
2 点赞 ·
0 评论

NNs(Neural Networks,神经网络)和Polynomial Regression(多项式回归)等价性之思考,以及深度模型可解释性原理研究与案例...

1. Main Point0x1:行文框架第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景。第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法,只是用了不同的方法解决了同一个问题,这样我们就形成了一个统一的观察视角,不再将深度神经网络看成是一个独立的算法。第四章:讨论通用逼近理论,这是为了将视角提高到一个更高的框架体...
转载
发布博客 2019.08.28 ·
1589 阅读 ·
1 点赞 ·
0 评论

阴谋还是悲剧?- 基于机器学习假设检验视角,看泰坦尼克号事件

1. 引言0x1:故事背景泰坦尼克号(RMS Titanic),又译作铁达尼号,是英国白星航运公司下辖的一艘奥林匹克级邮轮,排水量46000吨,于1909年3月31日在北爱尔兰贝尔法斯特港的哈兰德与沃尔夫造船厂动工建造,1911年5月31日下水,1912年4月2日完工试航。泰坦尼克号是当时世界上体积最庞大、内部设施最豪华的客运轮船,有“永不沉没”的美誉 。然而不幸的是,在它的处女...
转载
发布博客 2019.08.11 ·
171 阅读 ·
0 点赞 ·
0 评论

浅谈独立特征(independent features)、潜在特征(underlying features)提取、以及它们在网络安全中的应用...

1. 关于特征提取0x1:什么是特征提取特征提取研究的主要问题是,如何在数据集未明确表示结果的前提下,从中提取出重要的潜在特征来。和无监督聚类一样,特征提取算法的目的不是为了预测,而是要尝试对数据进行特征识别,以此得到隐藏在数据背后的深层次意义。回想一下聚类算法的基本概念,聚类算法将数据集中的每一行数据分别分配给了某个组(group)或某个点(point),每一项数据都精确对...
转载
发布博客 2019.09.15 ·
1578 阅读 ·
0 点赞 ·
0 评论

从随机过程的熵率和马尔科夫稳态过程引出的一些思考 - 人生逃不过一场马尔科夫稳态...

1. 引言0x1:人生就是一个马尔科夫稳态每一秒我们都在做各种各样的选择,要吃青菜还是红烧肉、看电影还是看书、跑步还是睡觉,咋一看起来,每一个选择都是随机的,而人生又是由无数个这样的随机选择组成的结果。从这个前提往下推导,似乎可以得出一个结论,即人生是无常的,未来是不可预测的。但事实真的是如此吗?以前的老人流行说一句话,三岁看小,七岁看老。这似乎是一句充满迷信主义色彩的俗语,...
转载
发布博客 2019.08.10 ·
991 阅读 ·
0 点赞 ·
0 评论

关于信息论中熵、相对熵、条件熵、互信息、典型集的一些思考

1. 绪论0x1:信息论与其他学科之间的关系信息论在统计物理(热力学)、计算机科学(科尔莫戈罗夫复杂度或算法复杂度)、统计推断(奥卡姆剃刀,最简洁的解释最佳)以及概率和统计(关于最优化假设检验与估计的误差指数)等学科中都具有奠基性的贡献。如下图这个小节,我们简要介绍信息论及其关联的思想的来龙去脉,提纲挈领地给出一个总的框架。1. 电子工程(通信理论)香农(shan...
转载
发布博客 2019.08.09 ·
1414 阅读 ·
1 点赞 ·
0 评论

信道容量及信道编码原理学习

1. 引言0x1:什么是通信当我们说“A与B通信”时,我们本质意思是在说A的物理行为使B产生一种需要的物理状态。信息的传输是一个物理过程,因此,必然受到无法控制的周边噪声以及信号处理本身缺陷的影响。如果接受者B与传输者A就所传输的内容是一致的,那么说这次通信是成功的。1. 数据压缩与数据传输的对偶性在数据压缩和数据传输之间存在对偶性:在数据压缩过程中,去除数据中所...
转载
发布博客 2019.09.07 ·
1889 阅读 ·
0 点赞 ·
0 评论

对博弈活动中蕴含的信息论原理的讨论,以及从熵角度看不同词素抽象方式在WEBSHELL文本检测中的效果区别...

1. 从赛马说起0x1:赛马问题场景介绍假设在一场赛马中有m匹马参赛,令第i匹参赛马获胜的概率为pi,如果第i匹马获胜,那么机会收益为oi比1,即在第i匹马上每投资一美元,如果赢了,会得到oi美元的收益,如果输了,那么回报为0。有两种流行的马票:a兑1(a-for-1):开赛前购买的马票,马民赛马前用一美元购买一张机会收益为a美元的马票,一旦马票对应的马在比赛中赢了,...
转载
发布博客 2019.08.17 ·
126 阅读 ·
0 点赞 ·
0 评论

关于数据压缩、信源编码、赫夫曼码的一些研究,以及由此引出对决策树模型的信息论本质的思考...

1. 关于数据压缩0x1:什么是数据压缩?为什么要进行数据压缩?从信息论的角度来看数据压缩,本质上就是通过寻找一种编码方案,在不损失或者尽量少损失原始信源信号的前提下,将原始信源信号映射到另一个D元码字空间上。在机器学习中,我们经常讨论到的”模型训练“,其本质上就是在寻找一个”信源映射函数“,例如线性回归的回归参数,就是一种信源映射函数,可以将输入空间X,一一映射到Y空间,所...
转载
发布博客 2019.08.13 ·
560 阅读 ·
1 点赞 ·
0 评论

面试突击(八)——JVM的结构及内存模型,是怎么划分的?

声明:本文图片均来自网络,我只是进行了选择,利用一图胜千言的力量来帮助自己快速的回忆相关的知识点0:再上一张Java代码的转换流程图.java——Java程序员编写,给人看的.class——Java编译器编译,给JVM看的机器码指令——JVM转换,给OS看的1:Java字节码信息加载进JVM后都是怎么存放的,如下图所示,是JVM的内存模型图,注意:JV...
转载
发布博客 2019.09.29 ·
148 阅读 ·
0 点赞 ·
0 评论

面试突击(四)——面试准备

不打无准备之仗,面试也一样,如果想提高面试的成功率,则需要好好的准备,当然关键在于平时的学习和积累,如果平时努力不够,临时抱佛脚只能解一时急!下面是我认为作为一个java工程师面试大概需要复习和准备的东西。转载于:https://www.cnblogs.com/godtrue/p/11582489.html...
转载
发布博客 2019.09.25 ·
85 阅读 ·
0 点赞 ·
0 评论

面试突击(七)——JVM如何加载Java字节码信息的?

声明:本文图片均来自网络,我只是进行了选择,利用一图胜千言的力量来帮助自己快速的回忆相关的知识点1:先看一下Java类文件的转换过程,如下所示,Java字节码文件是通过类加载子系统来放入JVM的内存空间的2:字节码文件的生命周期如下所示3:类加载的双亲委派模式如下所示转载于:https://www.cnblo...
转载
发布博客 2019.09.29 ·
49 阅读 ·
0 点赞 ·
0 评论

面试突击(二)——理解计算机编程技术复杂性的根源

编程到底难在哪里呢?编程语言的语法复杂?业务逻辑复杂?可能都存在吧!不过就我自身的感受是编写多线程高并发相关的代码,以及编写网络通信的代码是比较复杂的,学习过c/c++不过我主要使用java编程,猜测管理系统内存直接和OS打交道的部分也应该是比较复杂的。如果没有多线程高并发编程,也不需要编写多进程之间通信的编程,我想编程可能就会轻松许多了。那问题来了,为啥会有进程、线程的存...
转载
发布博客 2019.09.08 ·
75 阅读 ·
0 点赞 ·
0 评论

面试突击(六)——JVM如何实现JAVA代码一次编写到处运行的?

声明:本文图片均来自网络,我只是进行了选择,利用一图胜千言的力量来帮助自己快速的回忆相关的知识点JVM是 JAVA Virtual Machine 三个英文单词的首字母缩写,翻译成中文就是Java虚拟机,这个东西是用c++语言编写的一款软件,目的在于实现Java代码的一次编写到处运行,通过这个东西可以屏蔽计算机硬件的差异性,当然,为了解放JAVA程序员的生产力,他还做了许多的其...
转载
发布博客 2019.09.29 ·
128 阅读 ·
0 点赞 ·
0 评论

面试突击(一)——理解计算机基石

学习计算机也有些时间了,慢慢的理解了一些原来不太理解的东西,今年输入了一些东西但是输出的很少,发现自己越学习越感觉自己什么都不会,我不是天才不能无师自通也不算聪明什么东西一学就会,其实慢慢的发现自己比较的愚钝,许多东西都学习的比较慢,而且有些东西要花许久的时间才能学习的明白。但是也不能不学习,人生如逆水行舟不进则退,那咋办?我感觉没什么好法子,一点一滴的学下去呗!坚持学下...
转载
发布博客 2019.09.08 ·
79 阅读 ·
0 点赞 ·
0 评论

面试突击(五)——Java常用集合

为了勾起回忆,我画了一个常用集合类的结构关系图,话不多说,详见下图:实际开发中ArrayList/HashMap/HashSet是三种最常用的集合工具类,通过其结构关系图也能清晰的了解他们的特性,所以,这里也将他们完整结构关系图贴出来,以便回忆!1:ArrayList2:HashMap3:HashSet转载于:https://ww...
转载
发布博客 2019.09.29 ·
48 阅读 ·
0 点赞 ·
0 评论

面试突击(三)——理解计算机网络编程技术的复杂性

如果网络编程像调用本地方法一样就好了,这样编程就会变得简单了起来,那网络编程的痛点在哪里呢?按照我的理解,总结为如下几点:转载于:https://www.cnblogs.com/godtrue/p/11503410.html...
转载
发布博客 2019.09.10 ·
105 阅读 ·
0 点赞 ·
0 评论

Angualr6+ 将数据转换整合PDF文档导出或在线预览

前言:需要将自己的数据单或是图片等转换成PDF格式,可以在线预览与下载;所需pdfmakes和ng2-pdf-viewer;并且解决pdfmakes中文与中文符号乱码问题;一、安装Pdfmakes命令行:npm install pdfmake --save二、在所用的.ts文件中导入引用:import * as pdfMake from 'pdfmake/build/pd...
转载
发布博客 2019.09.04 ·
69 阅读 ·
0 点赞 ·
0 评论
加载更多