栈和队列经典题目汇总

本文汇总了栈和队列的经典题目,包括如何实现一个支持Push、Pop和Min操作且时间复杂度为O(1)的栈,使用两个栈实现队列,用两个队列模拟栈,以及一个数组实现两个栈的方法。详细介绍了每种方法的思路和操作过程,重点在于优化时间和空间效率。
摘要由CSDN通过智能技术生成

实现一个栈,要求实现Push(出栈)、Pop(入栈)、Min(返回最小值的操作)的时间复杂度为O(1)

1.用两个栈实现
入栈:一个栈作为数据栈,一个栈作为最小值栈,往数据栈中直接压入数据,比较此时数据栈栈顶元素和min栈栈顶元素的大小,若min栈的栈顶元素小,则往min栈中压入栈顶元素,若要数据栈栈顶元素小,则压入数据栈栈顶元素。
出栈:数据栈和min栈同时pop
取最小值:取min栈的栈顶元素
这里写图片描述

//用两个栈实现
template<class T>
class Stack1
{
public:
    void Push(T d)
    {
        sData.push(d);

        if (sMin.empty() || sMin.top() > d)
            sMin.push(d);
        else
            sMin.push(sMin.top());
    }

    void Pop()
    {
        if (!sData.empty())
        {
            sData.pop();
            sMin.pop();
        }
        else
            return;
    }

    T& Min()
    {
        assert(!sMin.empty());

        return sMin.top();
    }

private:
    stack<T> sData;   //数据栈
    stack<T> sMin;    //最小值栈
};

2.用一个栈实现
入栈:min值的确定方法和两个栈时一样,不过数据和min值压入同一个栈,数据先压入,min值后压入。
出栈:pop两次。
取最小值:取栈顶元素值。
这里写图片描述

//用一个栈实现
template<class T>
class Stack2
{
public:
    void Push(T d)
    {
        if (s.empty() || s.top() > d)
        {
            s.push(d);
            s.push(d);
        }
        else
        {
            T tmp = s.top();
            s.push(d);
            s.push(tmp);
        }
    }

    void Pop()
    {
        if (!s.empty())
        {
            s.pop();
            s.pop();
        }
        else
            return;
    }

    T& Min()
    {
        assert(!s.empty());

        return s.top();
    }

private:
    stack<T> s;
};

push和pop都只进行了常数次,所以时间复杂度为O(1)

使用两个栈实现一个队列

1.保证在整个过程中,一个栈为空,则另外一个栈要么为空,要么有数据,不能出现两个栈同时有数据的情况,这样就可以借助为空的那个栈进行push和pop等操作了。

template<class T>
class Queue1
{
   
public:
    void Push(T d)
    {
        if (s1.empty() && s2.empty())
        {
            s1.push(d);
        }
        else 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值