Java Python Mathematics 376: Ordinary Differential Equations
Assignment 1
Note: This assignment consists of 10 problems of equal weight.
Due: After Unit 6
1. Solve the following initial value problem,
2. Find a special integrating factor and solve
3. Find an integrating factor and solve
4. Solve the following initial value problem,
5. Solve
6. Solve
7. Solve
8. A tank is filled with V = 200 L of a brine containing α = .4 kg of salt A per litre. At moment 0, input and output valves are opened, and a brine containing another salt B, with concentration β = .2 kg per litre runs into the tank at a rate ri = 5 L/sec. The mix runs out of the tank with rate ro = 4 L/sec. The salts do not interact with each other. Determine the ratio k of quantity of salt B to the quantity of salt A when the tank contains V1 = 400 L of the mixture.
9. (Heating)
The temperature M(t) outside a building decreases at a constant rate of 1 ◦C Mathematics 376 Ordinary Differential Equations Assignment 1Python per hour. The inside of the building is heated, and there is no other source of cooling. The heater was switched on at time t = 0, when the temperature inside, T(t), was 17◦C, and the temperature outside was 0 ◦C. Assume that the heater generates a constant amount h = 50,000 Btu/hr of heat when it is working, the heat capacity of the building is γ = 1/5 degrees per thousand Btu, and the time constant for heat transfer between the outside and the inside of the building is τ = 2 hr. On the basis of Newton’s law of cooling,
find the upper value of the temperature in the building in the time interval 0 ≤ t < 4 hr.
10. (Landing)
A container with mass M kg is dropped by a helicopter from height H km at time t = 0, with zero velocity. From the outset, its fall is controlled by gravity and the force of air resistance, f(v) = −kv, where v is the current velocity of the container.
In τ seconds after the drop, a parachute opens, resulting in an increase of air resistance up to F(v) = −Kv. Determine the time T at which the container touches the ground, and its velocity at this moment, if
M = 200 kg, H = 2000 m, τ = 20 s, k = 10 kg/s, and K = 400 kg/s