基于内容的图像检索系统(集成语义特征)

 

一、系统主界面功能说明


 

选择图像库:选择当前操作的图像库路径。特征入库、训练模型和语义分类都是基于当前选择路径的图像的。检索时不需要选择图像库路径,是基于数据库存储的图像特征和语义特征检索。

打开:打开待检索图片。

开始检索:执行图像检索。也可以通过“图像检索”菜单选择对应的算法检索。

 

单一特征选择:选择单一的图像特征进行检索,包括多种颜色、纹理和形状特征。

综合特征检索:选择综合特征进行图像检索。

检索进度:显示检索进度。

检索结果:显示检索结果,按相似度排序显示结果图片的缩略图。可在“图像检索”->“设置图片显示数目”修改显示结果的数目。


 

二、语义特征功能说明

简要说明:系统可支持独立的基于视觉的图像检索,也可以结合图像的语义特征进行检索。采用支持向量机算法进行语义分类。具体操作如下:

(1)     训练模型:选择已进行人工分类的训练图像库(即人工指定语义特征,目前支持一、二级分类),选择“语义分类”->“训练SVM模型”,在弹出的对话框中输入模型名称,选择分类的特征类型,设置算法参数,点击确定开始训练模型。模型文件存储在数据库的SVM_MODEL表中。

 

(2)     语义分类:选择需要进行语义分类的图像库路径,点击“语义分类”->“SVM语义分类”,在弹出对话框中选择用于分类的模型(根据在训练模型时输入的模型名称选择),点击确定开始进行语义分类。分类的结果存储在数据库的SEMANTIC表中。

三、检索效果比较

基于特征的图像检索效果:

 

检索结果中存在其它类型的图像,检索效果一般。

 

点击“语义过滤”选择指定语义类型:

 

 

结合语义特征的检索效果:

 

检索结果已没有其它类型的干扰。

 

采用改进后的综合特征进行检索:

 


需要源码的朋友可与我联系:ttyangf@qq.com

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值