G 砝码称重
题目描述
你有一架天平和 N 个砝码,这 N 个砝码重量依次是 W1, W2, · · · , WN。 请你计算一共可以称出多少种不同的重量?
注意砝码可以放在天平两边。
输入格式
输入的第一行包含一个整数 N。
第二行包含 N 个整数:W1, W2, · · · , WN。
输出格式
输出一个整数代表答案。
样例输入
3
1 4 6
样例输出
10
样例说明
能称出的 10 种重量是:1、2、3、4、5、6、7、9、10、11。
1 = 1;
2 = 6 − 4 (天平一边放 6,另一边放 4);
3 = 4 − 1;
4 = 4;
5 = 6 − 1;
6 = 6;
7 = 1 + 6;
9 = 4 + 6 − 1;
10 = 4 + 6;
11 = 1 + 4 + 6。
评测用例规模与约定
对于 50% 的评测用例,1 ≤ N ≤ 15。
对于所有评测用例,1 ≤ N ≤ 100,N 个砝码总重不超过 100000。
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int dp[101][100001];
int a[101];
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
int main(int argc, char *argv[]) {
int i,j,sum=0,n;
scanf("%d",&n);//输入砝码个数
for(i=1;i<=n;i++){
scanf("%d",&a[i]);//输入各个砝码的重量
sum=sum+a[i];//砝码重量总和,能够称量的重量总和不可能超过这个数
}
dp[1][a[1]]=1;//dp[i][j]表示加入i个砝码,重量j是否能被称量,若能则dp[i][j]为1,若不能则dp[i][j]不被赋值,加入第一个砝码,第一个砝码的重量肯定能被称量
for(i=2;i<=n;i++){//从第二个砝码开始一个一个加砝码,到最后一个砝码被加入停止循环
for(j=1;j<=sum;j++){//j表示被称量的重量,j增加到所有砝码总质量sum时停止循环;
dp[i][j]=dp[i-1][j];//加入第i个砝码后能称量的重量 肯定要包括加入第i-1个砝码能称量的重量
}
dp[i][a[i]]=1;//加入的第i个砝码的重量肯定能被称量,一侧只放第i个砝码
for(j=1;j<=sum;j++){//更新加入i个砝码,能否称量j重量的数据
if(dp[i-1][j]==1){//如果在加入第i个砝码之前,j质量就已经能够被称量,则可以进行更新
dp[i][a[i]+j]=1;//在加入第i个砝码之前,j质量加上加入新砝码i的质量能够被称量,砝码全放一边
dp[i][abs(a[i]-j)]=1;//在加入第i个砝码之前,j质量减去加入新砝码i质量的绝对值能够被称量,砝码一边放一个
}
}
}
int count=0;
for(j=1;j<=sum;j++){
if(dp[n][j]==1){
count++;//统计加入n个砝码后,能称量重量j的数量
}
}
printf("%d",count);
return 0;
}