- 博客(2)
- 收藏
- 关注
原创 机器学习小常识2——数据处理与特征选择
机器学习里有一句名言:数据和特征决定了机器学习的上限,而模型和算法的应用只是让我们逼近这个上限。主要包括三部分:一是获取数据、数据抽样二是数据探索三是数据预处理与清洗 获取数据,数据抽样如何保证取样数据的质量?是否在足够范围内有代表性?数据样本取多少合适?如何分类(训练集、测试集、验...
2018-07-25 19:36:06 586
原创 机器学习小常识一——如何防止过拟合和欠拟合
概念解释:过拟合:训练的模型在训练集上面的表现很好,但是在验证集上面的表现很差,即模型的泛华能力较差,如图1 中的Overfitting;欠拟合:训练的模型在训练集上面的表现很差,在验证集上面的表现也很差,如图1 中的Underfitting;原因分析:过拟合:1. 最本质原因是“训练的模型太复杂,即模型记住了某些并不通用的特征,而不是学习到了通用的特征”;2. 训练集...
2018-07-25 19:17:50 2372
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人