版本 v0.4
1. 项目概述
1.1 项目背景
随着电子商务和供应链管理的快速发展,物流行业面临着更高的效率要求和更复杂的业务场景。中小物流企业作为行业的重要组成部分,普遍面临着数字化程度低、运营成本高、服务能力有限等挑战。为了满足中小物流企业的数字化转型需求,构建一个以业务为核心、平台化运作、标准化服务、AI协同的物流一体化系统变得尤为重要。本系统旨在通过AI技术赋能,面向中小物流企业提供专业的仓配一体化解决方案,为企业提供全流程的AI协同支持,帮助其提升运营效率、降低成本并增强市场竞争力。
1.2 项目目标
基于SaaS模式和JeecgBoot框架,构建一个以业务为中心的智能物流一体化平台,实现以下目标:
- 业务驱动:围绕物流核心业务流程,提供端到端的解决方案
- 平台化运作:支持多租户管理,实现资源共享和业务协同
- AI协同:将AI技术作为团队的一部分,深度参与业务各个环节,提供智能协同支持,提升决策效率和业务处理能力
- 全流程可视化:实现物流各环节的实时监控和可视化管理
- 数据驱动:基于大数据分析,提供决策支持和业务优化建议
- 安全可靠:确保系统数据安全和高可用性
- 灵活扩展:支持功能模块化扩展和定制
- 成本优化:通过系统优化降低物流运营成本
- 提升客户满意度:提供优质的服务体验和及时的信息反馈
- 符合行业标准:遵循物流行业的标准规范和最佳实践
1.3 项目范围
系统涵盖以下核心业务领域:
- 订单全生命周期管理:包括订单接收、处理、跟踪等全流程功能
- 仓储全流程管理:包括入库、出库、库存管理等功能
- 运输全链路管理:包括运输计划、调度、跟踪等功能
- 计费结算管理:包括费用计算、结算、发票管理等功能
- AI协同平台:将AI技术作为团队的一部分,深度参与业务各个环节,提供智能协同支持
- 基础管理:包括用户、组织、权限等基础功能
- SaaS平台与多租户管理:包括租户管理、订阅计费等功能
- 物流联盟与资源共享:促进物流企业间的资源共享和协同
- 业务导入平台:为联盟企业提供业务拓展渠道
2. 业务架构设计
2.1 业务流程图

- 描述物流业务从订单接收到费用结算的完整流程
2.2 核心业务场景
2.2.1 订单处理场景
- 多渠道订单接入:支持电商平台、ERP系统、API接口等多种渠道的订单接入
- 智能订单审核:AI作为团队成员深度参与订单审核流程,与人工协同识别异常订单并自动处理
- 订单智能分发:根据订单类型、优先级、目的地等因素,AI与业务团队协同完成订单最优分发决策
2.2.2 仓储作业场景
- 入库作业:从收货、验货、上架的全流程管理,AI作为团队成员与仓储人员协同完成库位智能分配
- 库存管理:实时监控库存状态,AI与库存管理人员协同预测库存需求和周转情况
- 出库作业:从订单波次规划、拣货、发货的全流程管理,AI与业务团队协同优化拣货路径
2.2.3 运输配送场景
- 运输计划制定:根据订单量、时效要求等制定最优运输计划
- 智能调度:AI作为团队成员深度参与调度决策,与调度人员协同匹配车辆、司机和货物信息,优化调度效率
- 运输跟踪与监控:实时监控运输状态,AI与运营团队协同预测运输时间和可能的延误
2.2.4 费用结算场景
- 费用自动计算:基于预设规则自动计算各项物流费用
- 对账与结算:支持多维度对账功能,提供结算单生成和审核流程
- 发票管理:支持发票开具、审核和管理,与结算单关联
2.2.5 商超与连锁品牌配送场景
- 多门店配送计划:支持按门店、按周期制定配送计划,满足连锁品牌多门店配送需求
- 配送窗口管理:严格管理门店收货窗口,确保按时配送
- 多种配送模式:支持常温、冷链、生鲜等多种配送模式,满足不同商品的配送要求
- 门店验收管理:支持门店电子签收和异常反馈,确保配送质量
- 退换货逆向物流:提供门店退换货流程管理,支持逆向物流跟踪
- 促销期间峰值处理:支持促销活动期间的订单激增和临时配送需求
- 智能路线规划:针对多门店配送特点,优化路线规划,降低配送成本
3. 系统架构设计
3.1 云原生微服务架构
采用云原生微服务架构,将系统分为以下几层:
- 前端层:采用Vue 3和Element Plus构建响应式Web界面,支持PC端和移动端
- API网关层:统一入口,负责请求路由、认证授权、限流熔断等功能
- 微服务层:将业务拆分为多个独立的微服务,包括OMS、WMS、TMS、BMS等
- 数据持久层:管理数据存储和访问,支持多种数据库
- 基础设施层:包括容器服务、存储服务、消息队列等云基础设施
3.2 技术栈选型
- 开发语言:Java 17,Node.js
- 后端框架:JeecgBoot 3.8.2
- 前端框架:Vue 3,ant-design-vue,uni-app
- 数据库:MySQL,Redis,MongoDB
- 中间件:RocketMQ,Elasticsearch,MinIO
- 容器技术:Docker,Kubernetes
- 开发工具:IDEA,VSCode,Trae CN,Maven,APIFOX
3.3 部署架构
采用多租户隔离方案,确保各租户数据独立和安全:
- 共享数据库、独立Schema:不同租户数据存储在同一数据库但不同Schema中
- 租户ID隔离:所有业务数据必须包含租户ID字段
- 资源配额管理:为不同租户分配和限制系统资源
- 弹性扩展:支持根据租户数量和业务量动态扩展系统资源
3.4 企业级AI应用架构
为支持AI作为团队一部分深度参与业务各个环节,设计了完整的企业级AI应用架构,包括:
- 基础设施层:提供AI计算资源和存储服务,可基于云平台能力构建
- AI平台层:前期可租赁成熟AI服务能力,后期根据业务发展逐步构建自有AI模型和算法平台,提供统一的AI能力调用接口
- 能力服务层:封装各类AI能力,包括智能预测、智能分析、智能推荐、智能识别等,作为团队能力的延伸
- 应用层:将AI能力深度融入

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



