The maximum-subarray problem

本文介绍了一种解决最大子数组求和问题的算法实现,通过动态规划思想,该算法能在O(n)的时间复杂度内找到给定数组中具有最大和的连续子数组及其下标范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The maximum-subarray problem

public static void main(String[] args) {
		int[] A = {13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7};

		int low  = 0;
		int high = 0;
		int sum  = A[0];
		int max = A[0];              //已知A[j-1]的最大子数组和
		int max_low=0;
		for (int i = 1; i < A.length; i++) {

			if(max>0){
				max=A[i]+max;
			}else {
				max=A[i];
				max_low=i;
			}

			if(max>sum){
				sum=max;
				low=max_low;
				high=i;
			}
		}
		System.out.println(low + "  " + high + " " + sum);
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值