PyTorch
通往盛夏
这个作者很懒,什么都没留下…
展开
-
Pytorch实现CIFAR-10分类
Pytorch-tutorial CIFAR-10分类准备数据:下载CIFAR-10并归一化定义CNN定义损失函数在training set上训练CNN在test set上测试CNNtensorvision包中自带常用的视觉数据集,其中就包括CIFAR-10。Tutorial中将网络的训练分为了5个步骤:准备数据:下载CIFAR-10并归一化定义CNN定义损失函数在training s...原创 2018-11-30 21:56:18 · 4097 阅读 · 1 评论 -
Python创建用于分类的数据集(数据:图像 + 标签:文本)
转载自 https://blog.csdn.net/Teeyohuang/article/details/79587125 之前讲的例子,程序都是调用的datasets方法,下载的torchvision本身就提供的数据,那么如果想导入自己的数据应该怎么办呢?本篇...转载 2018-12-01 17:01:20 · 10429 阅读 · 6 评论 -
PyTorch创建分割数据集(数据:图像 + 标签:图像)
转载自 https://blog.csdn.net/Teeyohuang/article/details/82108203前面一篇写创建数据集的博文--- Pytorch创建自己的数据集1 是介绍的应用于图像分类任务的数据集,即输入为一个图像和它的类别数字标签,本篇介绍输入的标签label亦为图像的数据集,并包含一些常用的处理手段。比如做图像语义分割时就会用到这种数据输入方式。1、数据集简介...转载 2018-12-01 17:04:25 · 19403 阅读 · 6 评论 -
【PyTorch图像语义分割】3. 训练规则:损失函数、优化
损失函数:交叉熵:对每个像素使用交叉熵。优化:略。Point:label是和输入相同大小的图像,不同的类用不同的颜色(或灰度,如1-21类分别用0-20灰度值表示)表示。FCN最终(应该)输出与输入相同大小的prediction map,每个像素应与label相对应。但是FCN的conv层的存在势必回减小最终输入的prediction map的大小,故需要deconv层或直接双线...原创 2018-12-05 14:31:42 · 3479 阅读 · 1 评论 -
【PyTorch图像语义分割】4. 使用训练好的模型测试
使用训练好的模型测试新图片1. 图像的加载2. 用网络forward测试1. 图像的加载测试图像的加载仍然是通过继承torch.ultis.data.Dataset加载。在加载训练图像的时候用的是class UAVDataSet(torch.utils.data.Dataset):需要可以返回数据、标签。但是在测试新图像的时候没有标签,故只需要返回数据就行,代码如下:class UAV...原创 2018-12-12 20:12:32 · 5856 阅读 · 5 评论 -
【PyTorch图像语义分割】1. PyTorch数据准备与预处理
PyTorch数据准备与预处理.py源文件的结构dataset.py的功能用来加载数据的类`torch.utils.data.DataLoader()`导入自己的dataset数据子类的基础框架数据子类的完整代码使用UAV图像的dataset.py.py源文件的结构数据准备与预处理: dataset.py模型:model.py训练规则:train.pydataset.py的功能统一...原创 2018-12-03 21:17:08 · 8687 阅读 · 1 评论