Deep Learning 读书笔记(九)

本文探讨了10年NIPS会议上提出的Object Bank概念,它是一种高阶图像表示方法,用于解决场景分类和语义特征稀疏化问题。通过预训练的通用对象检测器,Object Bank构建了一种尺度不变的响应映射,以解决低层次特征在高层视觉任务中的局限性。文章介绍了使用latent SVM和纹理分类器作为对象检测器,以及如何处理维度灾难、选择合适的对象数量和正则化方法。实验表明,Object Bank提供了有效的图像表示,但实现内容基础的压缩和选择合适数量的物体检测器是关键挑战。
摘要由CSDN通过智能技术生成

        这次看的这篇文章的题目是:“Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification” 这是10年NIPS上的一篇文章,我个人的观点觉得它指出了对于场景分类的一种新的方向,感觉还是有很多可以改进的工作可以做的。

        文章在Abstract就提出了,尽管图片low-level的特征在场景分类以及物体识别中有着比较好的应用。但是它的特征是基于像素或是图片的某个部分区域的。这导致了其只含有很少量的semantic meanings。对于更高层次的视觉任务,这种low-level的特征就不是很好了。所以这篇文章就提出了Object Bank这个工作,其主要思想就是“an image is represented as a scale-invariant response map of a large number of pre-trained generic object detectors”.大概意思就是说,每一幅图片的特征已经训练好的那些object detectors共同表示的。不论这个图片是属于哪个数据集的,使用的object detector都是一样的。而且如果使用了稀疏算法,Object Bank对于规模较大的场景数据库能够有更有效的表示和更好的可扩展性。

        在这个工作中,所遇到的最重要的问题就是维度灾难。因为Object Bank所提取出来的特征的维度通常都是很大的。但对于一般的数据集来说,一个类可能只有几十个或是几百个实例以供测试。所以我们需要“structural risk minimization via appropriate regularization of t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值