这次看的这篇文章的题目是:“Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification” 这是10年NIPS上的一篇文章,我个人的观点觉得它指出了对于场景分类的一种新的方向,感觉还是有很多可以改进的工作可以做的。
文章在Abstract就提出了,尽管图片low-level的特征在场景分类以及物体识别中有着比较好的应用。但是它的特征是基于像素或是图片的某个部分区域的。这导致了其只含有很少量的semantic meanings。对于更高层次的视觉任务,这种low-level的特征就不是很好了。所以这篇文章就提出了Object Bank这个工作,其主要思想就是“an image is represented as a scale-invariant response map of a large number of pre-trained generic object detectors”.大概意思就是说,每一幅图片的特征已经训练好的那些object detectors共同表示的。不论这个图片是属于哪个数据集的,使用的object detector都是一样的。而且如果使用了稀疏算法,Object Bank对于规模较大的场景数据库能够有更有效的表示和更好的可扩展性。
在这个工作中,所遇到的最重要的问题就是维度灾难。因为Object Bank所提取出来的特征的维度通常都是很大的。但对于一般的数据集来说,一个类可能只有几十个或是几百个实例以供测试。所以我们需要“structural risk minimization via appropriate regularization of t