数学思维到底是什么?这本书用数学中最重要的8个常数终于讲透了!

ab1dc7ba3b8b7173b06261918a680b09.png

在数学发展的过程中,很多时候提出新的数学问题,开创新的数学领域,最初的动机并不是解释生活中的现象,而是因为它本身的美妙。几乎所有的数学家都认为数学是优美的。而普通人要如何感受数学的美呢?

数学科普大神顾森的这本《思考的乐趣》就从“生活中的数学”、“数学之美”、“几何的大厦”、“精妙的证明”和“思维的尺度”五个维度,用了大量的案例来展现数学的乐趣,每一个读过的人都会被深深吸引。这是一个热爱思考的年轻人积攒的让人一读就欲罢不能的趣味书。《思考的乐趣》出版至今,收到了十余万的读者的喜爱。

今天就选取书中那些关于有趣“神秘的数学常数”与大家一起分享数学的美。

我一直觉得,数学中的各种常数是最令人敬畏的东西,它们似乎是宇宙诞生之初上帝就已经精心选择好了的。那一串无限不循环的数字往往会让人陷入一种无底洞般的沉思——为什么这串数字不是别的,偏偏就是这个样呢?除了那些众所周知的基本常数之外,还有很多非主流的数学常数,它们的存在性和无理性同样给它们赋予了浓重的神秘色彩。现在,就让我们一起来看一看,数学当中到底有哪些神秘的常数。

01

fb5ac301131d5f2b49a2f889af1869b8.png

古希腊的大哲学家毕达哥拉斯(Pythagoras)很早就注意到了数学与大千世界的联系,对数学科学的发展有着功不可没的贡献。他还创立了在古希腊影响最深远的学派之一——毕达哥拉斯学派。毕达哥拉斯学派对数字的认识达到了审美的高度。他们相信,在这个世界中“万物皆数”,所有事物都可以用整数或者整数之比来描述。

然而,毕达哥拉斯学派的一位叫做希帕索斯(Hippasus)的学者却发现,边长为1的正方形,对角线的长度不能用整数之比来表示。这一发现无疑触犯了学派的信条,因此希帕索斯的命运非常悲惨,最后被溺死在了大海之中。与此有关的历史记载非常模糊,因此后人开始添油加醋,演绎出了这段故事的诸多版本,希帕索斯为何而死也是众说纷纭。不管怎样,希帕索斯都被人们当作了发现无理数的第一人。

利用勾股定理可知,边长为1的正方形,对角线的长度就是方程63433da7d8813f2cb5ff2f8b4a711209.png的唯一正数解,我们通常把它记作2c39aa52e487686c1730e5ae07ee7a82.png376f1459b60ac6a1ccc5fd5af5133fc1.png可能是最具代表性的无理数了,证明它的无理性有很多种方法。最常见的一种就是下面这个反证法:假设1044fa3c7d4fb6de5a3873a8892e4f2c.png可以表示成bc95c28de121a3eabe264a2506515d83.png,并且假设59651fc8f8e58d9e7caf6af4a68da62c.png已经是一个最简分数了。那么dd20ea1c40beb621f05404524263e5b6.png,也即524536f573ef98928d5f90d13e0231bc.png。这说明11e198d6b833c866451304394f524ea5.png是个偶数。但只有偶数的平方才能等于偶数,因此363200d7491bda786b1306a0435efd20.png一定是偶数。72700173dbc2009a1c87bafa83c3e1ea.png是偶数就说明680c8d2add7a485668e2c207475a7a59.png能被4整除,等式两边约掉一个2,可见8a5075dc14a57f082fac0804a6e6f25f.png也是偶数,从而d885481ab40877198c5c7b70528ef007.png是偶数。这样,1c496ad3744e7d17fa3f26b5f7a940d9.png也是偶数,dc45ad65b63572fd82f4eacdf0e53197.png也是偶数,那么6fdc54bebfed0fbc720daf9674ea4341.png17d91204729a87004482b44eea43e6fa.png就还可以继续约分,与我们的假设矛盾。

证明还可以更简单一些。同样假设b7ddb01e8f4dc32cf2702251c8212b15.png已经是最简分数了,那么eacc91fc020034348b7149782e575d7e.png,也就是1c12ca80df25b8d149568a7ba6722f7c.png。注意到等式的左边是一个平方数,它只能以0、1、4、5、6、9结尾;等式的右边是一个平方数的两倍,它的末位则只可能是0、2、8。然而q2和2_p_2是相等的,因此它们必须都以0结尾。这说明,p2和q2里一定都含有因子5,从而p和q本身也都含有因子5,这说明120c3825810c5a8a74fcb6bcc7164336.png可以继续约分,与假设矛盾。

我们还有一些更帅的方法来证明,0738c9da588f841a95c99618c1e15828.png没有正整数解。比方说,注意到,如果对一个平方数分解质因数,它必然有偶数个质因数(183c158394ea20042a6bac181194ec5d.png的所有质因数就是把1b7c5e02afba29f3b8283eecdc9e812a.png的质因数复制成两份)。于是,0b1863d4ebee5d23c96b7f7e78dd0c82.png有偶数个质因数,a55f470db80d915c7590754fb34c6865.png也有偶数个质因数,e1bd019d87237abc3e7eb7b27375842b.png就有奇数个质因数。等号左边的数有偶数个质因数,等号右边的数有奇数个质因数,这显然是不可能的,因为同一个数只有一种分解质因数的方法。

无理数的出现推翻了古希腊数学体系中的一个最基本的假设,冲击了古希腊哲学中离散的世界观,引发了数学史上的第一次数学危机。

无理数虽说“无理”,但在生产生活中的用途却相当广泛。量一量你手边的书本杂志的长与宽,你会发现它们的比值都约为1.414。这是因为通常印刷用的纸张都满足这么一个性质:把两条较短边对折到一起,得到一个新的矩形,则新矩形的长宽之比和原来一样。因此,如果原来的长宽比为20f69cfc65f576d944b0867ccdd1aeb7.png,新的长宽比就是5541e524ae477b353aa75ea40768ce0f.png。解方程ad1bf8affcc4680b0670e0f2ddfac0f7.png就能得到7b25960f6dad9a88e8d66854e0766f96.png

02

圆周率b223cfd36d704e743358890a985000ae.png

不管圆有多大,它的周长与直径的比值总是一个固定的数。我们就把这个数叫做圆周率,用希腊字母006d47ed3d440bc0ed74d8ab361a551b.png来表示。人们很早就认识到了圆周率的存在,对圆周率的研究甚至可以追溯到公元前。从那以后,人类对圆周率的探索就从未停止过。几千年过去了,人类对圆周率的了解越来越多,但却一直被圆周率是否有理的问题所困扰。直到1761年,德国数学家朗伯(Lambert)才证明了2e4a84c965eb3cdc31383f03da30a626.png是无理数。

7bc8fdd9b587704f9221df327a278d39.png是数学中最基本、最重要、最神奇的常数,它常常出现在一些与几何毫无关系的场合中。例如,全体正整数的平方的倒数和就会收敛到一个与8a7a832f6e5c3a912e5dd00086bba9bb.png有关的数值:

bf36eaf28ec09bd0c667638a0c9fc296.png

而任意取出两个正整数,则它们互质(最大公约数为1)的概率为c5f2aa2e840efc5a4db295855decd19b.png,恰好是上面这个算式答案的倒数。

03

自然底数96730edfad3ba301481ac9c9224a07e9.png

在17世纪末,瑞士数学家伯努利(Bernoulli)注意到了一个有趣的现象:当dbfc8ad00138b0a4bf97b3fafff382bb.png越大时,b80921e315af33f3e73cfeffd40a88e3.png将会越接近某个固定的数:

dbfa1f796e5184dba1691041da0ee43a.png

a785db399bfd0876bed8f45d3f745ce8.png

1f9af2f4c9d765650a2210999248deff.png

18世纪的大数学家欧拉(Euler)仔细研究了这个问题,并第一次用字母2eaf0f72541bc66ab62e49b9d1e13501.png来表示当f73cbad8b99df59d3ba713d86546a57e.png无穷大时733fe8c3ffc72391fc172ea30e4759f3.png的值。他不但求出了63381b3d65031ce0147f7fbcc538c24e.png,还证明了13fdcbc47e123890f99740e885aeaaed.png是无理数。11b906280af7f2d10f1c68a0622fbee0.png的用途也十分广泛,很多公式里都有959cbef2ad851c0bae1866a87ea44e47.png的身影。比方说,如果把前69b113d500595ba6656fb44bccccafb4.png个正整数的乘积记作90a367b64f4497152f7cf6d41fb209c9.png,则有斯特林(Stirling)近似公式ffd75e5323036301d9a1b3a16668d26a.png。在微积分中,无理数d1a7bb0d0b3aa347360113799b027040.png更是大显神通,6ce9e79edaa834d971c81e85c52e2b03.png的导数竟然是它本身,这使得c399100bac5a4dc1820b77532005408e.png也成为了高等数学中最重要的无理数之一。

在数学中还有一个奇妙的常数i,它叫做“虚数单位”,简单地说也就是07e9445ba8bdbc7e3a7634a15cc1f247.png的意思。虽然89fce6bea9d6c3b3700181929727befc.png看上去非常不合理,但若承认它的存在,所有的n次多项式都会有恰好n个根(包括重根),数系瞬间变得如同水晶球一般完美。可以说,圆周率π、自然底数e和虚数单位i是数学中最基本的三个常数。有一个等式用加法、乘法、乘方这三种最基础的运算,把这三个最基本的常数以及两个最基本的数字(0和1)联系在了一起,没有任何杂质,没有任何冗余,漂亮到了神圣的地步:

eπi + 1 = 0

这个等式也是由欧拉发现的,它叫做“欧拉恒等式”。《数学情报》(The Mathematical Intelligencer)杂志曾举办过一次读者投票活动,欧拉恒等式被评选为“史上最美的公式”。

04

欧拉常数e1cf445e180fceea213f8cafc240d59f.png

第一次看到调和级数ec24eb055ebfef6f6013083e51ad2c1f.png,很多人都以为它会收敛到一个固定的值。其实,这个级数是发散的,无限地加下去,和也将会变得无穷大。我们很容易证明这一点:把554a807282e362f8e163ce79ebd2bc15.png4711a541b5c4f6e56edda1178c303164.png都缩小到3ff02948f9df861425cfa3dfbc08de71.png,把ef9a1091ea22e76ddc710aac24f68335.png4215ffdd1181092ab584a2a4b12a3fc6.png这4个数都缩小到cd2f018901a945ee888ded889cd3dd60.png,把接下来的8个数都缩小到ea1bd4f23b067051e93c45932037ba43.png,等等,可以看出数列仍然是发散的——因为这相当于有无穷多个aebbd17d42e483eb3bf17e12d4e8d246.png在相加。因此,我们不但证明了ddc467bd8d43d22c0d53a38679caf40d.png的发散性,还证明了数列的前5f722133db971be32576121c12f7521c.png项之和一定大于b5e3087252cf2d4897f78729afe4d921.png

虽然调和级数是发散的,但它发散的速度非常慢。把036e342d06558233dbe8f191fa79517b.pngcc36f01a6240d611250af63d3fe31a0d.png都放大到bbe9bd4a774a9fd25558ea4166010329.png,把9930b37642bb29773f05cbe177fea899.pngcd320e3ca3ffdbae4436d3f14575b7f3.png这4个数都放大到9f6d58afecd50a3a7f9180163a931b76.png,把接下来的8个数都放大到a7467b9f1652600264ab9f7cc7ba5a82.png,等等,可见前32450c7ab344ae462e645cb9223b9731.png项之和不会超过3a79f5ed1069e744d6816634ad28716e.png个1相加。按此估算,数列的前1 000 000项之和也不到20。

注意,44dccaadaabd2216d1abaf72a4212444.png的前19e2c2376dd99463646c2545ba33b2d1.png项之和夹在了c8a77d39a73375abb6d0175dbf2f4cf7.png6dd45d0ea2744a6b5d42adfb05edfb9e.png之间,这表明它一定是对数级增加的。随着e9cc71ab0ed418f93d0da9c46b292c6b.png的增加,9fa4d2865e3d3b85dfb513acfc38131f.png将会越来越接近于b47f6e04582e6c7953f5817b3a145068.png。1735年,欧拉首次发现,当c8f0544c9a92bd79134be50de0645a03.png增加到无穷大时,133e8e0b820ae126c508ba05d50a7517.png25a9f01ce0b16ad24af49c821a991f8a.png之间的差将收敛于一个固定的值。这个值就被命名为欧拉常数,用希腊字母00b26123de3f0db0708da344845eca38.png来表示,它约等于0.5772。

有趣的是,虽然大家都认为欧拉常数一定是无理数,但到目前为止还没有人能够证明这一点。现在已经知道,如果欧拉常数是有理数的话,它的分母至少是17678a6b431504fb7d0ed0ee1457213f.png

05

黄金分割1ea1bd7bf3e2eea7fcce7a84e4557ffb.png

把一条线段分成两段,分割点在什么位置时最为美观?分在中点处,似乎太对称了不好看;分在三等分点处,似乎又显得有些偏了。人们公认,最完美的分割点应该满足这样一种性质:较长段与较短段的长度比,正好等于整条线段与较长段的长度比。这个比值就叫做黄金分割,用希腊字母d42d7435f8c57cf0122baaa03e0685f5.png来表示。若令线段的较短段的长度为1,则9e8d2fe6e9d655b78940f4fb7fb85916.png就满足方程5d056086a21c740b59062102f278b2ec.png,可解出8d9c67f6c1ee609587532c9dde082977.png

在美学中,黄金分割有着不可估量的意义。在那些最伟大的美术作品中,每个细节的构图都充分展示了黄金分割之美。在人体中,黄金分割也无处不在——肘关节就是整只手臂的黄金分割点,膝关节就是整条腿的黄金分割点,而肚脐则位于整个人体的黄金分割点处。

在数学中,黄金分割b16aa609e1fd97987951b2d2b8e710b2.png也展示出了它的无穷魅力。例如,在图1所示的正五角星中,同一条线上三个点A、B、C就满足ABd84faf12ba7e8fd8941a76d6a2ea3bcf.pngBC=4f72d580ccfd9e7ac8225bd172f1f9bb.png。在第12节讲到的8个算术游戏中,bb8880fec437f9b66a9f9c19a94d4938.png也出现在了一个出人意料的地方。

332b8e2681a0b9ad62ce14e888de8227.png

图 1

06

辛钦常数d4e029650e701c77f8f5eb5ce65f3ad7.png

每个实数都能写成056f7f9c24e49513daa0bdd4bda006ca.png的形式,其中ec3903b9a6e7f475f7c9fee868ecbe9e.png,fcf0e82c226e639bcfedde6d9dd65366.png,43f54ac537bef08465e2dacd1d3613dc.png, …都是整数。我们就把b08839a0e05d8d5f750798b6dc44d756.png叫做该数的连分数展开。比方说,77fc334ccc444749402b36b3f91b0caf.png是一个比3多一点点的数,大概比3多5a6bde7c9dc9354bdc3b17c274aafecc.png吧。但是,这个分母7还不够准确。事实上a27bebd5bfe3f289a851ad6eac267f9b.png是一个小于87fcc0582c281c21b6944dd8ad21a156.png但是大于062cae457882c24c42fee2e7e56f3669.png的数,也就是说刚才那个分母应该比7要大一点点,因此2b23dd3429ff28fe6405adacd32051b9.png可以表示成fa04686c4511b739c30e9b8c7714921d.png。继续计算我们还能得出更具体的结果,a3a0c48f12cbdc2e2d4d76a06165a78d.png约为60abda33cb42f1b41fd49c592b343eff.png,但是那个分母15比精确值还稍微小了一些,因此1fb8310615b130dc264079814eb79377.png可以写作b22ac4a89f74c4a0f1083855435f668f.png。省略的部分又可以写成多少多少分之一的形式,其中分母又可以拆成一个整数部分加上一个小数部分。不断这样做下去,我们就得到了ef0e57ea655214fc43df2e574b0eeb3d.png的连分数展开:707f5fbdc188b4609a968c97e6b1d70c.png

和小数展开比起来,连分数展开具有更加优雅漂亮的性质,这使得连分数成为了数学研究中的必修课。

在1964年出版的一本连分数数学课本中,数学家辛钦(Khinchin)证明了这样一个惊人的结论:除了有理数和二次整系数方程的根等特殊情况以外,几乎所有实数的连分数展开序列的几何平均数都收敛到一个相同的数,它约为2.685 452。例如,圆周率27bbc4c51df9acb4d73e2df00cae4442.png的连分数展开序列中,前20个数的几何平均数约为2.628 19,前100个数的几何平均数则为2.694 05,而前1 000 000个数的几何平均数则为2.684 47。

目前,人们对这个神秘常数的了解并不太多。虽然辛钦常数很可能是无理数,但这一点至今仍未被证明。而辛钦常数的精确值也并不容易求出。1997年,戴维•贝利(David Bailey)等人对一个收敛极快的数列进行了优化,但也只求出了辛钦常数的小数点后7350位。

07

康威常数f2c20270beefbe13df09171402faa183.png

你能找出下面这个数列的规律吗?

1,

11,

21,

1211,

111221,

312211,

13112221,

1113213211,

这个数列的规律简单而又有趣。数列中的第一个数是1。从第二个数开始,每个数都是对前一个数的描述:第二个数11就表示它的前一个数是“1个1”,第三个数21就表示它的前一个数是“2个1”,第四个数1211就表示它的前一个数是“1个2,1个1”……这个有趣的数列就叫做“外观数列”(look-and-say sequence)。

外观数列有很多有趣的性质。例如,数列中的数虽然会越来越长,但数字4永远不会出现。1987年,约翰•康威发现,在这个数列中,相邻两数的长度之比越来越接近一个固定的数。最终,数列的长度增长率将稳定在一个约为1.303 577的常数上。康威把这个常数命名为康威常数,并用希腊字母c46a5ff4afe61df5f095e9b9cb65d423.png表示。康威证明了f0e8bfc130308c9da740c0cdd1d02a24.png是无理数,它是某个71次方程的唯一实数解。

08

钱珀瑙恩常数64e90efa16ec687291ff0c96995a7fb9.png

把全体正整数从小到大依次写成一排,并在最前面加上小数点,便得到了一个无限小数0.1234567891011121314…。这个数是由英国统计学家钱珀瑙恩(Champernowne)于1933年构造出来的,他把它命名为钱珀瑙恩常数,用符号89f700db019c4a65075b2ebd26dac1cc.png表示。与其他的数学常数相比,钱珀瑙恩常数有一个很大的不同之处:这个数仅仅是为了论证一些数学问题而人为定义出来的,它并未描述任何一个数学对象。

钱珀瑙恩常数有很多难能可贵的性质。首先,容易看出它是一个无限不循环小数,因此它也就是一个无理数。其次,它还是一个“超越数”,意即它不是任何一个整系数多项式方程的解。它还是一个“正规数”,意即每一种数字或者数字组合出现的机会都是均等的。在众多数学领域中,钱珀瑙恩常数都表现出了其非凡的意义。

  推荐阅读

c21c92fb3cc267356f9b43629edbfe2c.jpeg

《思考的乐趣:Matrix67数学笔记》

作者:顾森

本书是一个疯狂数学爱好者的数学笔记,面向所有喜爱数学的读者。本书包括5部分内容,即生活中的数学、数学之美、几何的大厦、精妙的证明、思维的尺度,涉及48篇精彩的文章。即使你不喜欢数学,也会为本书的精彩所倾倒。

这是一本标新立异的趣味数学书。每一个读过的人都会被深深吸引。这是一个热爱思考的年轻人积攒的让人一读就欲罢不能的趣味书。

01

af32591802e8789778340a60e2129de7.jpeg

《数学的雨伞下:理解世界的乐趣》

作者:[法] 米卡埃尔•洛奈(Mickaël Launay)

译者:欧瑜

惊讶!是思考的起点;

数学,是理解世界本质与万物关联的工具!

以数学为起点,以思考为快乐!

法国数学学会“达朗贝尔奖”得主科普名作。

数学,是理解世界本质与万物关联的工具,它能制造两个指南针:一个叫“实用”,一个叫“优雅”。不懂得数学的意义,就无法真正学习和理解数学。

科学家为什么那么聪明?因为他们有非凡的思考方法。

以数学为工具,以思考为快乐;培养自己的思考力、观察力,成为真正的思考者。

02

b8150362479790360619c237727551fb.png

《数学与生活》(1、2、3、4)

作者:远山启

译者:吕砚山、莫德举等

日本数学教育议会创立者远山启力作,通俗讲解消除"应试数学"带来给初中数学高中数学带来的恐惧感,了解什么是数学,充分感受数学之美,培养理科逻辑思维。

《数学与生活》为日本数学教育改革之作,旨在还原被考试扭曲的数学,为读者呈现数学的真正容颜,消除应试教学模式带来的数学恐惧感。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值