1,在Hadoop中,reduce支持多个输出,输出的文件名也是可控的,就是继承MultipleTextOutputFormat类,重写generateFileNameForKey方法
- public class LzoHandleLogMr extends Configured implements Tool {
- static class LzoHandleLogMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, Text> {
- public void map(LongWritable key, Text value, OutputCollector<Text, Text> output, Reporter reporter)
- throws IOException {
- try {
- String[] sp = value.toString().split(",");
- output.collect(new Text(sp[0]), value);
- }catch (Exception e) {
- e.printStackTrace();
- }
- }
- }
- static class LzoHandleLogReducer extends MapReduceBase implements Reducer<Text, Text, Text, NullWritable> {
- @Override
- public void reduce(Text key, Iterator<Text> values,
- OutputCollector<Text, NullWritable> output, Reporter reporter)
- throws IOException {
- while (values.hasNext()) {
- output.collect(values.next(), NullWritable.get());
- }
- }
- }
- public static class LogNameMultipleTextOutputFormat extends MultipleTextOutputFormat<Text, NullWritable>
- {
- @Override
- protected String generateFileNameForKeyValue(Text key,
- NullWritable value, String name) {
- String sp[] = key.toString().split(",");
- String filename = sp[0];
- if(sp[0].contains(".")) filename="000000000000";
- return filename;
- }
- }
- @Override
- public int run(String[] args) throws Exception {
- JobConf jobconf = new JobConf(LzoHandleLogMr.class);
- jobconf.setMapperClass(LzoHandleLogMapper.class);
- jobconf.setReducerClass(LzoHandleLogReducer.class);
- jobconf.setOutputFormat(LogNameMultipleTextOutputFormat.class);
- jobconf.setOutputKeyClass(Text.class);
- jobconf.setNumReduceTasks(12);
- FileInputFormat.setInputPaths(jobconf,new Path(args[0]));
- FileOutputFormat.setOutputPath(jobconf,new Path(args[1]));
- FileOutputFormat.setCompressOutput(jobconf, true);
- FileOutputFormat.setOutputCompressorClass(jobconf, LzopCodec.class);
- JobClient.runJob(jobconf);
- return 0;
- }
- }
在新版本的hadoopAPI是通过Job类来设置各种参数的,但是我调用 Job.setOutputFormatClass()来使用MultipleTextOutputFormat的时候,竟然报错,原因是必须继承子org.apache.hadoop.mapreduce.OutputFormat。0.20.2比较致命的其中一个bug, 升级到0.21能解决
2, 如果同一行数据,需要同时输出至多个文件的话,我们可以使用MultipleOutputs类:
- public class MultiFile extends Confi gured implements Tool {
- public static class MapClass extends MapReduceBase
- implements Mapper<LongWritable, Text, NullWritable, Text> {
- private MultipleOutputs mos;
- private OutputCollector<NullWritable, Text> collector;
- public void confi gure(JobConf conf) {
- mos = new MultipleOutputs(conf);
- }
- public void map(LongWritable key, Text value,
- OutputCollector<NullWritable, Text> output,
- Reporter reporter) throws IOException {
- String[] arr = value.toString().split(",", -1);
- String chrono = arr[0] + "," + arr[1] + "," + arr[2];
- String geo = arr[0] + "," + arr[4] + "," + arr[5];
- collector = mos.getCollector("chrono", reporter);
- collector.collect(NullWritable.get(), new Text(chrono));
- collector = mos.getCollector("geo", reporter);
- collector.collect(NullWritable.get(), new Text(geo));
- }
- public void close() throws IOException {
- mos.close();
- }
- }
- public int run(String[] args) throws Exception {
- Confi guration conf = getConf();
- JobConf job = new JobConf(conf, MultiFile.class);
- Path in = new Path(args[0]);
- Path out = new Path(args[1]);
- FileInputFormat.setInputPaths(job, in);
- FileOutputFormat.setOutputPath(job, out);
- job.setJobName("MultiFile");
- job.setMapperClass(MapClass.class);
- job.setInputFormat(TextInputFormat.class);
- job.setOutputKeyClass(NullWritable.class);
- job.setOutputValueClass(Text.class);
- job.setNumReduceTasks(0);
- MultipleOutputs.addNamedOutput(job,
- "chrono",
- TextOutputFormat.class,
- NullWritable.class,
- Text.class);
- MultipleOutputs.addNamedOutput(job,
- "geo",
- TextOutputFormat.class,
- NullWritable.class,
- Text.class);
- JobClient.runJob(job);
- return 0;
- }
- }
这个类维护了一个<name, OutputCollector>的map。我们可以在job配置里添加collector,然后在reduce方法中,取得对应的collector并调用collector.write即可。