西门子S7-1500PLC与西门子V90 PN伺服通讯控制项 西门子S7-1500PLC与西门子V90 PN伺服通讯控制项目程序
西门子S7-1500PLC与西门子V90 PN伺服通讯控制项 西门子S7-1500PLC与西门子V90 PN伺服通讯控制项目程序项目程序包含S7-1500 PLC,KTP系列触摸屏,西门子V90 PN伺服(多台伺服轴),康耐视相机PROFINET总线通讯,基恩士二维码读码器PROFINET总线通讯。
程序语言包含 梯形图,SCL语言,GRAPH语言与STL语句表语言混合编写,1500PLC与西门子V90伺服通过PROFINET总线,利用西门子FB284功能块进行控制,对于想学习西门子PLC,总线控制项目的技术人员,是一个非常好的项目参考程序。
磁链观测器
vesc中使用的方法
已经移植到了自己的工程中,实现0速闭环启动
代码、文档、仿真是一一对应的,方便学习
磁链观测器
vesc中使用的方法。
已经移植到了自己的工程中,实现0速闭环启动。
代码、文档、仿真是一一对应的,方便学习。
微电网高效能源管理的随机博弈
python源代码,代码按照高水平文章复现,保证正确
构建了一个随机博弈框架,包括一个微电网网络
微电网高效能源管理的随机博弈
python源代码,代码按照高水平文章复现,保证正确
构建了一个随机博弈框架,包括一个微电网网络,使能源交易、动态定价和作业调度成为可能。
为了解决这一问题,我们设计了一种新的双网络模型(ET和ADL网络),它可以同时进行动态定价和需求调度。
为了计算各种设置下的最优策略,应用了我们提出的算法,并证明了通过我们提出的动态定价模型获得的回报对大多数微电网产生了更大的回报。
MATLAB代码:基于混合决策规则的不确定单元承诺的完全自适应分布鲁棒多阶段框架
关键词:分布式鲁棒DRO wasser
MATLAB代码:基于混合决策规则的不确定单元承诺的完全自适应分布鲁棒多阶段框架
关键词:分布式鲁棒DRO wasserstwin metric Unit commitment
参考文档:无
仿真平台:MATLAB Cplex Mosek
主要内容:随着风电越来越多地渗透到电网中,在实现低成本可持续电力供应的同时,也带来了相关间歇性的技术挑战。
本文提出了一种基于混合决策规则(MDR)的完全自适应基于 Wasserstein 的分布式鲁棒多阶段框架,用于解决机组不确定性问题(UUC),以更好地适应风电在机组状态决策和非预期性方面的影响。
调度过程。
与现有的多阶段模型相比,该框架引入了改进的MDR来处理所有决策变量以扩展可行域,因此该框架可以通过调整决策变量的相关周期数来获得各种典型模型。
因此,我们的模型可以为一些传统模型中不可行的问题找到可行的解决方案,同时为可行的问题找到更好的解决方案。
所提出的模型采用高级优化方法和改进的 MDR 重新制定,形成混合整数线性规划 (MILP) 模型,以解决计算难处理性问题。
所提出的模型的有效性和效率已通过使用 IEEE 基准
无人艇(机)仿真,带gui
具体内容看图片
文字资料已遗失,主参数通过initial来生成,具体模型全部在simulink里
无人艇(机)仿真,带gui。
具体内容看图片。
文字资料已遗失,主参数通过initial来生成,具体模型全部在simulink里面,可自行推导,或者加价我去推导。
gui界面打开方式:在主界面输入guide,打开相应gui即可
一种分布式鲁棒优化的微电网单元分配方法
python源代码,代码按照高水平文章复现,保证正确
针对电网负荷和电力市场价格不确定的
一种分布式鲁棒优化的微电网单元分配方法
python源代码,代码按照高水平文章复现,保证正确
针对电网负荷和电力市场价格不确定的情况,提出了一种分布式鲁棒单元承诺方法。
提出的关键推力的方法是利用Kullback-Leibler分歧概率分布和制定一个优化问题,最小化预期成本所带来的最坏的分布模糊集。
该方法有效地利用历史数据,利用k - means聚类算法结合软动态时间扭曲分数名义概率分布形式以及与之相关的支持。
提出了一种两级分解的方法来有效地解决所设计的问题。
我们进行了代表性的研究,并量化了该方法相对于vis-a-via一个基于随机优化的模型在不同差异容忍值下的相对优点。
最优控制电池储能模型 蓄电池储能模型的最优控制python源代码,代码按照高水平文章复现
包含五个python脚本,它从data
最优控制电池储能模型 蓄电池储能模型的最优控制python源代码,代码按照高水平文章复现
包含五个python脚本,它从data .csv读取价格、负载和温度数据。
然后用本文中描述的决策变量、目标和约束构造一个pyomo抽象模型。
然后使用开放源代码的内部点算法求解器ipopt来计算最优解,并绘制出结果。
BESS模型可以根据物理域进行分类:荷电状态(SoC)、温度和降解。
SoC模型可以通过定义容量的单位进一步分类:电能、电荷和化学浓度。
大多数基于SoC的能量模型都是线性的,在表示效率和功率限制的方式上存在差异。
基于充电的SoC模型包括许多预测电池组电压的等效电路的变化。
基于化学浓度的SoC模型在电池设计中使用材料特性和物理参数来预测电池电压和充电容量。
温度是通过热产生和传热的组合来模拟的。
热是通过熵变、过电位损失和电阻加热产生的。
热通过传导、辐射和对流进行传递。
热模型的变化是基于产生和传递机制的表示和有限元在模型中的数量和物理意义。
电池退化建模可以根据经验或基于潜在的物理机制。
经验应力因子模型分离了时间、电流、SoC、温度和放电深度(DoD)对电池健康状态(So
simplorer与Maxwell电机联合仿真,包含搭建好的Simplorer电机场路耦合主电路与控制算法(矢量控制SVPWM)
simplorer与Maxwell电机联合仿真,包含搭建好的Simplorer电机场路耦合主电路与控制算法(矢量控制SVPWM),包含电路与算法搭建的详细教程视频。
仿真文件可复制,可将教程中的电机模型换成自己的电机模型。
一种可用于实时应用程序的SLAM
PDF和源码
Visual SLAM的许多应用,如增强现实、虚拟现实、机器人或自动驾驶,都
一种可用于实时应用程序的SLAM。
PDF和源码。
Visual SLAM的许多应用,如增强现实、虚拟现实、机器人或自动驾驶,都需要通用、健壮和精确的解决方案,大多数情况下都具有实时功能。
在这项工作中,我们研究了一个完全在线的算法,处理单目和立体相机设置,各种地图比例比和帧率,从几Hz到几百Hz。
它在高效的多线程架构中结合了视觉定位方面的最新贡献。
与竞争算法的广泛比较显示了最终算法的最先进的准确性和实时性能
基于BP神经网络的数据分类预测matlab 代码这段程序是一个简单的神经网络模型,用于分类任务 下面我将对程序进行详细分析和
基于BP神经网络的数据分类预测
matlab 代码
这段程序是一个简单的神经网络模型,用于分类任务。下面我将对程序进行详细分析和解释。
首先,程序开始时清空环境变量、关闭报警信息、关闭图窗、清空变量和命令行。这些操作是为了确保程序运行时的环境干净。
接下来,程序读取名为"数据集.xlsx"的Excel文件中的数据,并将数据存储在变量"res"中。
然后,程序通过统计"res"中的类别数和样本数,计算出训练集和测试集的划分比例。默认情况下,训练集占数据集的70%。
接着,程序根据类别将数据集划分为训练集和测试集。对于每个类别,根据划分比例,将相应数量的样本分配给训练集和测试集。
然后,程序对训练集和测试集进行数据转置,以便后续处理。
接下来,程序对训练集和测试集进行数据归一化处理。使用mapminmax函数将输入数据映射到0到1的范围内,以便更好地进行神经网络训练。
然后,程序定义了一些超参数,包括最大训练次数、学习率和隐藏层节点数。
接下来,程序开始进行模型训练。调用net_train函数,传入训练集数据、训练集标签、隐藏层节点数、学习率和最大训练次数。net_trai
带有领导者的二阶多智能体的领导跟随一致性仿真 二阶MASs,事件触发机制
matlab仿真程序,二阶MASs,事件触发机制
这段代码是一个带有领导者的二阶多智能体的领导跟随一致性仿真。以下是对代码的分析:
1. 代码初始化了系统参数,包括邻接矩阵A、拉普拉斯矩阵L、系统的领导跟随矩阵H等。
2. 代码定义了一个二阶系统的微分方程模型,并使用RK4方法解方程。
3. 代码使用事件触发机制来控制智能体之间的通信和更新。每个智能体根据自身的位置和速度误差以及邻居智能体的误差信息来决定是否触发通信。
4. 代码通过绘制图像展示了系统的位置和速度状态、智能体在二维空间中的位置分布、控制输入和误差变化趋势等。
这段代码应用在多智能体系统的领导跟随问题中,通过控制输入和事件触发机制,实现了智能体之间的协同运动和领导者的跟随。算法的优势在于通过事件触发机制减少了通信开销,提高了系统的效率和鲁棒性。
需要注意的是,代码中的参数需要根据具体问题进行调整,包括邻接矩阵A、系统的领导跟随矩阵H、控制参数alpha、beta、lambda等。此外,代码中的事件触发条件也可以根据具体需求进行修改。
对于新手来说,从这段代码中可以学到以下几点:
1. 了解多智能体系统的领导跟
Android studio成品源码项目日历备忘录记事本,该日历备忘录app实现了日历查看,添加备忘录,闹钟提醒,删除备忘录等功
Android studio成品源码项目日历备忘录记事本,该日历备忘录app实现了日历查看,添加备忘录,闹钟提醒,删除备忘录等功能,适合新手学习,数据库sqlite。
程序开开发发,全网回复最快,效率最高。
其他需求也可以询问加好友。
你想要的都有。
界面美观,功能齐全。
这是一个名为日历备忘录记事本的Android Studio成品源码项目。该应用程序具备日历查看、添加备忘录、闹钟提醒和删除备忘录等功能,非常适合初学者学习。它的数据库使用了SQLite。该应用程序开发速度快,响应时间最短,具有极高的效率。除了上述功能外,还可以根据其他需求向我们提问或添加好友。无论您想要什么功能,这个应用程序都能满足您的需求。界面设计精美,功能齐全。
根据您提供的信息,涉及到的知识点和领域范围有:
1. Android Studio:这是一种用于开发Android应用程序的集成开发环境(IDE)。
2. 源码项目:指的是提供应用程序的源代码,可以用于进一步学习和定制。
3. 日历备忘录:该应用程序涉及到了日历和备忘录管理的功能。
4. SQLite:这是一种嵌入式关系型数据库,用于在应用程序
配电网分布式电源和储能选址定容以配电网总成本最低为目标函数,其中包括年运行成本,设备维护折损成本、环境成本;以系统潮流运行为约
配电网分布式电源和储能选址定容
以配电网总成本最低为目标函数,其中包括年运行成本,设备维护折损成本、环境成本;以系统潮流运行为约束条件,采用粒子群算法求解,实现光伏、风电、储能设备的规划。
这是一个使用粒子群算法进行优化的程序。下面我将对程序进行详细的分析和解释。
首先,程序开始时加载了一些数据文件,包括光伏、风电和负荷的数据。然后,定义了一些参数,如蓄电池参数、迭代次数、种群大小、速度更新参数等。
接下来,程序进行了种群的初始化。使用随机数生成种群的初始位置,并初始化速度。然后,对种群中的每个个体进行潮流计算,并计算适应度。适应度的计算包括对电压、网损等进行评估,并考虑了一些约束条件,如储能容量、光伏容量等的限制。
接下来,程序进行了迭代优化过程。在每次迭代中,根据当前的速度和位置,更新粒子的速度和位置。然后,对更新后的粒子进行潮流计算,并计算适应度。如果个体的适应度优于个体历史最佳适应度,则更新个体历史最佳适应度和位置。如果个体的适应度优于全局最佳适应度,则更新全局最佳适应度和位置。
程序通过迭代优化过程不断更新粒子的速度和位置,直到达到指定的迭代次数。最后,程序输出优化结
基于copula的风光联合场景生成方法同时生成考虑空间相关性的风电和光伏联合场景,用于风光不确定性分析说明:地理位置相近的风
基于copula的风光联合场景生成方法
同时生成考虑空间相关性的风电和光伏联合场景,用于风光不确定性分析
说明:地理位置相近的风电机组和光伏机组具有极大的相关性,但是当前研究更多的是不计风光出力之间的相关性影响。
因此,采用 Copula 函数作为风电、光伏联合概率分布,生成风、光联合出力场景
编程语言:MATLAB
有注释,可提供参考文献
这个程序主要是基于Copula函数的风光功率联合场景生成。下面我将逐步解释程序的功能和工作流程。
首先,程序导入了一个名为"茶卡风光数据.xlsx"的数据文件,并对数据进行了预处理。数据文件中包含了风电和光伏的观测数据,每个小时一个观测值。程序将数据按照每天24小时的形式进行了重塑,得到了风电和光伏的历史观测数据。
接下来,程序定义了一些参数,包括初始场景数目(scenarionum)、要削减到的场景数目(num_cluster)和时间长度(ntime)。
然后,程序进行了Copula拟合。Copula是一种用于描述多维随机变量相关性的函数。在这里,程序使用Frank-Copula函数对每个小时的风电和光伏数据进行拟合。拟合过程中,程序使用了
这个仿真模型是基于Crowbar电路的双馈风力发电机(DFIG)的低电压穿越(LVRT)模型 该模型使用Matlab Simu
这个仿真模型是基于Crowbar电路的双馈风力发电机(DFIG)的低电压穿越(LVRT)模型。该模型使用Matlab Simulink进行仿真,并采用保护电路(串电阻)来实现低电压穿越功能。当电网电压下降时,保护电路会被激活,抑制转子过电流。Crowbar电路的电阻阻值和投入时间可以进行调节,这样可以模拟多组不同程度的电压跌落。
涉及到的知识点和领域范围:
- Crowbar电路:一种用于保护电路的装置,可以在电压异常情况下提供短路路径,以保护电路中的其他元件。
- 双馈风力发电机(DFIG):一种常用于风力发电的发电机类型,具有较高的效率和可调节的功率输出。
- 低电压穿越(LVRT):指发电机在电网电压下降时能够维持稳定运行,并通过调节电流来保护发电机和电网。
- Matlab Simulink:一种常用的工程仿真软件,用于建立和模拟各种系统和电路。
延申科普:
Crowbar电路是一种常见的电路保护装置,用于在电路中的电压异常情况下提供短路路径,以保护其他元件免受损坏。它通常由一个电阻和一个触发器组成,当电压超过设定阈值时,触发器会将电阻接入电路,形成短路路径,从而将过电压