题意:从n个人(对人编号1-n)中任意选k个人发他们明信片,但是这其中会有一些关系使得给了某个人i,就必须给某个人j,问发明信片的期望值,答案*C(n,k)
T个case
每个case有n,m,k (1 <= n <= 50, m <= 10000, 0 <= k <= n)
n代表总共有多少个人,m代表总共有多少种关系,k如题意
接下来m行有u,v两个人,表示如果给了u就必须给v. (1 <= u,v <= n)
例如n = 2, m = 1,k = 1
u = 1,v = 2
所以2种情况(C(2,1))
1 2(给了1号明信片就必须给2号一张)
2
所以总共是3张
其实就是求所有情况需要给的明信片总和
考虑对第i个人求解,那就是求所有情况给 i 的明信片的总和,如果要给第i个人明信片,那么肯定存在至少一个j可以到达i(有向图,i本身也可达i),所以给 i 明信片总和为C(n,k)-C(n-cnt,k),cnt为 j 的人数,把1-n的总和都加起来就是答案
本想将C(n,k)的每种情况都算出来然后求个总和的,结果因为每种情况的每个人都是不同的,所以可以从每个人出发算答案
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <iostream>
using namespace std;
typedef long long LL;
const int maxn = 50+5;
LL C[maxn][maxn];
bool vis[maxn],E[maxn][maxn];
int n,m,k;
void dfs(int u){
vis[u] = 1;
for(int i=1;i<=n;i++){
if(E[u][i]&&!vis[i])
dfs(i);
}
}
int main() {
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
memset(C,0,sizeof C);
for(int i=0;i<=50;i++)C[i][0] = 1;
for(int i=1;i<=50;i++){
for(int j=1;j<=i;j++){
C[i][j] = C[i-1][j] + C[i-1][j-1];
}
}
int T;
scanf("%d",&T);
while(T--){
memset(E,0,sizeof E);
LL ans = 0;
scanf("%d%d%d",&n,&m,&k);
while(m--){
int u,v;
scanf("%d%d",&u,&v);
E[v][u] = 1;
}
for(int i=1;i<=n;i++){
int cnt = 0;
memset(vis,0,sizeof vis);
dfs(i);
for(int j=1;j<=n;j++) if(vis[j]) cnt++;
ans += C[n][k] - C[n-cnt][k];
}
cout<<ans<<endl;
}
return 0;
}