LeetCode 338. 比特位计数

给你一个整数 n ,对于 0 <= i <= n 中的每个 i ,计算其二进制表示中 1 的个数 ,返回一个长度为 n + 1 的数组 ans 作为答案。

示例 1:

输入:n = 2
输出:[0,1,1]
解释:
0 --> 0
1 --> 1
2 --> 10

提示:

0 <= n <= 105

进阶:

很容易就能实现时间复杂度为 O(n log n) 的解决方案,你可以在线性时间复杂度 O(n) 内用一趟扫描解决此问题吗?
你能不使用任何内置函数解决此问题吗?(如,C++ 中的 __builtin_popcount )

解法一:动态规划,如3的比特位为1的位数等于将3右移一位(即1)的比特位为1的位数加上3&1:

class Solution {
public:
    vector<int> countBits(int n) {
        vector<int> ans(n + 1, 0);
        for (int i = 1; i <= n; ++i) {
            ans[i] = ans[i >> 1] + (i & 1);
        } 

        return ans;
    }
};

此算法时间复杂度为O(n),空间复杂度为O(1)。

解法二:每个数字都计算一遍位数:

class Solution {
public:
    vector<int> countBits(int n) {
        vector<int> ans(n + 1, 0);
        for (int i = 1; i <= n; ++i) {
            int ibak = i;
            while (ibak) {
                ans[i] += ibak & 1;
                ibak >>= 1;
            }
        } 

        return ans;
    }
};

此算法时间复杂度为O(nlgn),空间复杂度为O(1)。

解法三:使用库函数:

class Solution {
public:
    vector<int> countBits(int n) {
        vector<int> ans(n + 1, 0);
        for (int i = 1; i <= n; ++i) {
            ans[i] = __builtin_popcount(i);
        } 

        return ans;
    }
};

此算法时间复杂度为O(n),空间复杂度为O(1)。__builtin_popcount函数是GCC编译器提供的内建函数,它直接映射到计算机体系结构的相应汇编指令,时间复杂度为O(1)。

解法四:利用x&(x-1)的结果是x的最低的二进制比特位从1变成0:

class Solution {
public:
    vector<int> countBits(int n) {
        vector<int> ans(n + 1, 0);
        for (int i = 1; i <= n; ++i) {
            int ibak = i;
            while (ibak) {
                ibak = ibak & (ibak - 1);
                ans[i] += 1;
            }
        } 

        return ans;
    }
};

此算法时间复杂度为O(nlgn),空间复杂度为O(1)。

解法五:动态规划,最高位一定为1,x的比特位为1的计数等于去掉最高位后的数字的比特位为1的计数加上最高位的1:

class Solution {
public:
    vector<int> countBits(int n) {
        vector<int> ans(n + 1, 0);
        int highestBit = 0;
        for (int i = 1; i <= n; ++i) {
            // 当i是2的幂时,更新最高位
            if ((i & (i - 1)) == 0) {
                highestBit = i;
            }

            ans[i] = ans[i - highestBit] + 1;
        } 

        return ans;
    }
};

此算法时间复杂度为O(n),空间复杂度为O(1)。

解法六:动态规划,x的比特位为1的计数等于把x的最低位的1改为0后的数的比特位为1的计数加上最低位的1:

class Solution {
public:
    vector<int> countBits(int n) {
        vector<int> ans(n + 1, 0);
        for (int i = 1; i <= n; ++i) {
            ans[i] = ans[i & (i - 1)] + 1;
        } 

        return ans;
    }
};

此算法时间复杂度为O(n),空间复杂度为O(1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值