LeetCode 142.环形链表2

给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。

不允许修改 链表。

示例 1:
在这里插入图片描述
输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:
在这里插入图片描述
输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:
在这里插入图片描述
输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。

提示:
链表中节点的数目范围在范围 [0, 104^44] 内
-105^55 <= Node.val <= 105^55
pos 的值为 -1 或者链表中的一个有效索引

进阶:你是否可以使用 O(1) 空间解决此题?

快慢指针法,慢指针slow每走一步,快指针fast走两步,当两者能相遇时,说明链表存在环。如下图所示:在这里插入图片描述
假设环外的长度为a,slow进入环后,走了b的距离与fast相遇,此时fast已经走了n圈,相遇时,fast走过的距离为a + (b + c) * n + b,而slow走过的距离为a + b,存在以下等式:
a+(b+c)∗n+b=2(a+b)a+(b+c)*n+b=2(a+b)a+(b+c)n+b=2(a+b)
化简后得到:
a=(n−1)(b+c)+ca=(n-1)(b+c)+ca=(n1)(b+c)+c
这意味着链表头到环的入口的距离,正好等于n-1圈加上c的距离,因此我们可以让head指针指向链表头,slow指针指向相遇点,这样head指针走到环的入口时,slow指针正好走了n-1圈+c的距离(也就是也到了环的入口),即head和slow相遇时,就到了环的入口:

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        ListNode *slow = head;
        ListNode *fast = head;

        while (fast && fast->next) {
            slow = slow->next;
            fast = fast->next->next;

            if (slow == fast) {
                while (slow != head) {
                    slow = slow->next;
                    head = head->next;
                }

                return slow;
            }
        }

        return nullptr;
    }
};

如果链表的长度为n,则此算法时间复杂度为O(n),空间复杂度为O(1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值