一,题目描述
如果一个分数的分子和分母的最大公约数是 1,这个分数称为既约分数。
例如,34 , 52 , 18 , 71 都是既约分数。
请问,有多少个既约分数,分子和分母都是 1 到 2020 之间的整数(包括 1 和 2020)?
二,答案提交
这是一道结果填空的题,你只需要算出结果后提交即可。
本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
三,答案代码
方法一:
def f(m, n):
if n == 0:
m, n = n, m
while m != 0:
m, n = n % m, m
return n
ans = 0
for i in range(1, 2021):
for j in range(1, 2021):
if f(i, j) == 1:
ans += 1
print(ans)
方法二:(个人笨法)
import random
a=[]
for i in range(1,2021):
a.append(i)
def f(m, n):
if n == 0:
m, n = n, m
while m != 0:
m, n = n % m, m
return n
from scipy.special import comb
c=[]
for i in range(1,int(comb(2020,2))):
b = random.sample(a, 2)
c.append(b)
for i in c:
if f(i[0],i[1])!=1:
c.remove(i)
print(len(c))
答案: 2481215
四,题目解读
题目其实中心是求组合,把分子分母当成1~2020中的任意两个正整数,并判断两数最大公约数是不是1。可转化为在2020个数中抽取2个,并判断是否为即约分数,并计算即约分数个数。
五,代码解析
方法一:
def f(m, n): 定义一个求最大公约数的函数
if n == 0:
m, n = n, m
while m != 0:
m, n = n % m, m
return n
ans = 0 建立一个累计变量
for i in range(1, 2021): 用两个for循环抽取两个数
for j in range(1, 2021):
if f(i, j) == 1: 判断两个数是否为即约分数
ans += 1 成立条件累加
print(ans)
方法二:
import random
a=[]
for i in range(1,2021): 讲1~2020的数建立一个列表
a.append(i)
def f(m, n):
if n == 0: 定义一个求最大约数的函数
m, n = n, m
while m != 0:
m, n = n % m, m
return n
from scipy.special import comb
c=[]
for i in range(1,int(comb(2020,2))): 在1~2020之中随机抽取2个数,并循环comb(2020,2)次,这是在2020个数抽取2个数的总可能,不会多出这个范围,为了减少计算量。int是因为range函数里要用整数,而comb()求出来的不是整数
b = random.sample(a, 2)
c.append(b)
for i in c:
if f(i[0],i[1])!=1: 将不是即约分数的组合在列表里边去掉
c.remove(i)
print(len(c))
结语:构建 累加变量是蓝桥解题常用思路,用两次for循环来表示组合数(在多少数中抽取多少数的可能性数量)
十年脑血栓: