题目描述
已知重量分别为w1,w2,…,wn的若干物品和容量为C的背包,物品的效益值分别为p1, p2,…,pn。此处,w1,w2,…,wn和C都为整数。要求找出这n个物品的一个子集,使其尽可能使选入背包的物品的效益值最大;即,使Result=Σpi×xi 取最大值且满足∑wi×xi≤C,i=1,2,…n这里xi∈{0,1},1≤i≤n,xi=1表示物品i被选入背包,xi=0表示未选入。
输入
输入数据以三行的形式给出。第一行由两个数据组成:第一个数据为物品的个数,第二个数据为背包的容量;第二行为物品的重量,每两个数据之间用一个空格隔开,第三行为物品的效益值,每两个数据用一个空格隔开。
输出
请输出装载的最优效益值
样例输入
3 30
20 15 15
40 25 25
样例输出
50
/*这个题是一道很经典的动态规划问题,但是我刚学了深度优先搜索,所以就用深度优先搜索来解决*/
#include<bits/stdc++.h>
using namespace std;
int n,v,cmax;
int w[100],c[100];
void sousuo(int x,int sumw,int sumc){/*没有剪枝的深度优先搜索*/
if(x==n){
if(sumw<=v&&sumc>cmax){
cmax=sumc;
}
return;
}
sousuo(x+1,sumw,sumc);
sousuo(x+1,sumw+w[x],sumc+c[x]);
}
void sousuo2(int x,int sumw,int sumc){/*这个深度优先搜索进行了剪枝操作,提高代码运行效率*/
if(x==n)return;
sousuo2(x+1,sumw,sumc);
if(sumw+w[x]<=v){
if(cmax<sumc+c[x])cmax=sumc+c[x];
sousuo2(x+1,sumw+w[x],sumc+c[x]);
}
}
int main(){
cin>>n>>v;
for(int i=0;i<n;i++)cin>>w[i];
for(int i=0;i<n;i++)cin>>c[i];
sousuo2(0,0,0);
cout<<cmax<<endl;
return 0;
}