自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

小小小草儿的博客哟

追梦,启航

  • 博客(7)
  • 问答 (2)
  • 收藏
  • 关注

原创 【ACM】每一对顶点的最短路径(Floyd算法)

算法简述 Floyd算法用于求每一对顶点之间的最短路径,3个for循环就可以。时间复杂度O(n^3) 。Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) 算法代码这里写代码片总之:无论

2017-01-19 21:18:07 1086

原创 【ACM】带权有向图单源最短路径(Dijkstra算法)

最短路径的第一类问题 求从单个源点到其余各顶点的最短路径。算法简介 给定带权有向图G和源点v0,求从源点v0到G中其余各顶点的最短路径。迪杰斯特拉算法是对有权图进行搜索,但是如果引用于无权图或者是权值相等的图,就是广度优先搜索。(注意是有向图)算法描述 对于网N=(V,E),将N中的顶点分成两组: 第一组S:已求出的最短路径的终点集合(初始时只含有v0) 第二组V-S:尚未求出最短路径的终

2017-01-18 22:46:23 6727

原创 【ACM】堆排序

堆排序的时间复杂度为O(N*logN).二叉堆定义 二叉堆是完全二叉树或者是近似完全二叉树。 二叉堆满足两个特性: 1.父结点的键值总是大于或者等于(小于或者等于)任何一个子结点的键值。 2.每个结点的左子树和右子树都是一个二叉堆(最大堆或者最小堆)。当父结点的键值总是大于或者等于任何一个子结点的键值时为最大堆,反之为最小堆。堆的存储 一般都使用数组来表示堆,(若根节点从0开始,因为数组的

2017-01-17 15:11:16 535

原创 【ACM】字典树

字典树,Trie树,是一种树形结构,是一种哈希树的变种,典型功能是用于统计,排序和保存大量的字符串。优点是:利用字符串的公共前缀来节约存储空间,最大限度的减少无谓的字符串的比较。代码模板:#define MAX 26//定义结点typedef struct Trie { Trie *next[MAX]; int v;};Trie *root; //定义一个字典树//构建字典树voi

2017-01-14 23:17:07 398

原创 【ACM】Point定义

const double eps = 1e-8;//epsilonconst double PI = acos(-1.0);struct Point{ double x,y; Point(){} // 析构函数 Point(double _x,double _y) { x = _x; y = _y; } Point

2017-01-14 16:35:22 492

原创 【ACM】向量的叉乘(求面积)

在直角坐标系,假设i,j,k分别是x轴,y轴,z轴上的单位向量。叉乘积的方向垂直于这两个向量构成的平面,大小表示这两个向量构成的平行四边形的面积。假设OP1=(x1,y1,z1),OP2=(x2,y2,z2),OP1 X OP2 = (y1z2-y2z1)i + (x2z1-x1z2)j + (x1y2-x2y1)k因此叉乘的模为 |OP1 X OP2| = (y1z2-y2z1)+(x2z1-x

2017-01-14 15:09:41 10730 1

原创 【C++学习】C++运算符重载

c++中预定义的运算符的操作对象只能是基本数据类型,对于很多的用户自定义类型,也可以进行相似的运算符操作。运算符重载是对已有的运算符赋予多重含义,使同一个运算符作用于不同类型的数据导致不同类型的行为。 运算符重载的实质就是函数重载。 基本过程:首先要把指定的运算表达式转化为对运算符函数的调用,运算对象转化为运算符函数的实参,然后根据实参的类型来确定需要调用的重载类型函数。一:运算符重载的规

2017-01-02 16:23:49 765

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除