自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

小小小草儿的博客哟

追梦,启航

  • 博客(25)
  • 问答 (2)
  • 收藏
  • 关注

原创 【机器学习】GBDT+LR算法进行特征扩增

参考文献: https://blog.csdn.net/lilyth_lilyth/article/details/48032119 https://blog.csdn.net/asdfghjkl1993/article/details/786062680.简介\qquadCTR估计也就是广告点击率预估,计算广告训练与平滑思想说明了是用LR算法对于预测的有效性。LR(Logistic ...

2018-03-31 15:29:22 8716 3

原创 【图像处理】图像常见读取方式速度对比

0.简介即使随着现在得发展,CPU的处理速度提高和SSD的出现提高了数据的读取速度,但是对于超大规模的训练过程(ImageNet),读取图像的时间依然是一个较大的开销,因此本文旨在对常见的框架技术的图像读取方式进行对比。图像属性:(427,640,3)附上我的学习链接:https://zhuanlan.zhihu.com/p/303835801.对比过程1.1 OpenCV...

2018-03-30 17:26:04 9644 3

原创 【Tensorflow】tf.app.run()与命令行参数解析

tf.app.run()首先给出一段常见的代码:if __name__ == '__main__': tf.app.run()找到Tensorflow中关于上述函数run()的源码:def run(main=None, argv=None): """Runs the program with an optional 'main' function and 'argv...

2018-03-30 16:19:29 14926 7

原创 【Tensorflow】并行GPU计算

声明:本文参考书籍《实战Google深度学习框架》 参考链接:实战Google深度学习框架:TensorFlow计算加速0.简介\qquad在很多情况下,我们仅仅依靠CPU去训练深度学习程序是十分耗时间的,所以我们需要将深度学习框架在GPU上进行模型训练。但是,对于更加复杂的神经网络或者更加庞大的数据集,单个GPU已经无法满足我们的计算量需求,所以需要将训练过程并行在...

2018-03-30 12:02:41 1420 1

原创 【论文阅读】目标检测综述

上图链接 https://zhuanlan.zhihu.com/p/33277354?utm_source=wechat_session&utm_medium=social一:Two Stage1.RCNN论文链接:http://fcv2011.ulsan.ac.kr/files/announcement/513/r-cnn-cvpr.pdf 代码链接:https://...

2018-03-15 20:58:06 3139

原创 【Tensorflow】name_scope() 和 variable_scope() 区别

本文主要有两个重点: 1.placeholder、Variable、get_variable区别 2.name_scope、variable_scope区别placeholder、Variable、get_variable区别1.实验一代码import tensorflow as tfv1 = tf.placeholder(tf.float32, shape=[1])...

2018-03-13 20:04:34 323

原创 【Tensorflow】Saver使用

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_DATA',one_hot=True)def weights_variable(shape): return tf.Variable(tf...

2018-03-13 16:45:59 504

原创 【Tensorflow】卷积神经网络中strides的参数

在二维卷积函数tf.nn.conv2d(),最大池化函数tf.nn.max_pool(),平均池化函数tf.nn.avg_pool()中,卷积核的移动步长都需要制定一个参数strides。参数strides: A list of ints. 1-D tensor of length 4. The stride of the sliding window for each dimension...

2018-03-13 14:41:28 5599 3

原创 【Python学习】sklearn.preprocessing.LabelBinarizer()

在多数的机器学习比赛中,给出的标签都是非数字化的,所以我们需要对其进行转换。代码如下:from sklearn import preprocessingfeature = [[0,1], [1,1], [0,0], [1,0]]label= ['yes', 'no', 'yes', 'no']lb = preprocessing.LabelBinarizer() #构建一个转换对象...

2018-03-13 11:35:10 9838

转载 【深度学习理论】深度学习图像处理领域相关资源

原文链接:https://zhuanlan.zhihu.com/p/286010322.1 图像生成 2.1.1 绘画风格到图片的转换:Neural Style 2.1.2 图像类比转换:image-analogies 2.1.3 根据涂鸦生成图片:Neural Doodle 2.1.4 匹根据涂鸦类比图片:Sketchy 2.1.5 根据图片生成铅笔画:Pencil ...

2018-03-12 13:22:54 1171

原创 【深度学习理论】Mean Average Precision 计算

Precision = 检测正确的正样本数 / 总的检测样本(top-n) Recall = 检测正确的正样本数 / 总正样本(top-all)\qquad一般来说,Precision与Recall的效果是成反比的,简单的说,如果将所有检测样本识别为正样本,那么Recall=1,但是Precision却会降低。来自博客的一张图片:http://blog.sina.com.cn/s/blo...

2018-03-12 11:32:24 6144

转载 【神经网络】RNNs概述

原文链接:http://blog.csdn.net/heyongluoyao8/article/details/486362511.简介\qquad循环神经网络(Recurrent Neural Networks, RNNs)已经广泛应用在了自然语言处理领域(NLP)。2.RNNs基本介绍\qquadRNNs的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输...

2018-03-10 15:57:27 1993

原创 【深度学习理论】表征学习

\qquad在机器学习中,特征学习或者是表征学习是学习特征的技术的集合:将原始数据通过特诊提取并运行机器学习进行有效的开发。在学习使用特征的过程中,也获得了如何去提取特征的能力。 \qquad在监督特征学习中,被标记过的数据被当做特征用来学习。如神经网络、监督式字典学习等。 \qquad在无监督特征学习中,未被标记过的数据被当做特征用来学习。如无监督式字典学习、独立成分分析、自动编码、矩阵分解...

2018-03-09 11:12:02 4351

原创 【深度学习理论】正则化方法:L1、L2、数据扩增、Dropout

原文链接:http://blog.csdn.net/u012162613/article/details/44261657 声明:本文在原文的极大参考下,添加部分细节。原文很棒,点个赞!正则化\qquad在训练数据不够多时,或者过度训练时,常常会导致overfitting(过拟合)。随着训练过程的进行,模型复杂度增加,在train data上的error渐渐减小,但是在验证集上的er...

2018-03-08 21:21:35 1022

原创 【图像处理理论】高斯滤波

一.滤波基本概念\qquad滤波通常是通过卷积或者相关来实现,线性滤波一般是卷积操作。 (1)卷积:卷积核绕自己的核心元素顺时针旋转180度移动卷积核的中心元素,使它位于输入图像待处理像素的正上方在旋转后的卷积核中,将输入图像的像素值作为权重相乘第三步各结果的和做为该输入像素对应的输出像素(2)相关:移动相关核的中心元素,使它位于输入图像待处理像素的正上方将输入图像...

2018-03-08 16:56:17 2487

原创 【论文阅读】非极大值抑制

1.非极大值抑制 非极大值抑制(NMS)就是抑制不是极大值的元素,进一步搜索局部最大值。在YOLO算法以及一些其他的目标检测算法中,会生成很多候选框,每一个候选框都会输入到一个分类器中得到一个置信值。因为在窗口滑动的过程中,候选框之间会有很多的重叠区域,因此要进行筛选。2.算法流程 (1)把置信度最高的一个bounding box作为目标,将剩下bbox与该目标bbox求交区域面积。 (...

2018-03-08 15:33:16 1492

原创 【深度学习理论】基于滑动窗口的目标检测算法

声明:本文引用吴恩达教授的DeepLearning课程内容。1.目标检测基本概念 \qquad对于之前的图像问题多数是图像分类,首先将一个图片输入到神经网络中,然后通过多层卷积运算,最后经过几个全连接层,交给Softmax得到分类预测概率向量。 \qquad对于目标检测算法,输出标签需要增加边界框四个参数(有一些不同的表示方法:1.中心点、长、宽;2.左下角坐标、右上角坐标;3.左下角坐标...

2018-03-07 14:49:11 14664 3

原创 【Python学习】字符串前面添加(u,r,b)的功能

1.r/R 表示非转义的原始字符串,比如在字符串中如果出现\n是换行,但是如果在字符串的前面添加r则表示\和n两个字符,一般常见于正则表达式中。2.b Python3里默认的str是(Python2里的)unicode, bytes是(Python2)的str, b前缀代表的就是bytes。 Python2里, b前缀没什么具体意义, 只是为了兼容Python3的这种写法。3.u/U ...

2018-03-06 10:32:09 2988

原创 【Python学习】拼接函数vstack()、concatenate()、hstack()等

1.concatenate()Input:import numpy as npa = np.array([[1,2]])b = np.array([[3,4]])print(np.concatenate((a,b),axis=0))print(np.concatenate((a,b),axis=1))c = np.array([[1,2],[3,4]])d = np.arr...

2018-03-03 15:52:17 1901

原创 【Python学习】Numpy测试题(1)

题目原文1.Import numpy as np and see the version?import numpy as npprint(np.__version__)__version__就像是一种内置的宏。2.How to create a 1D array?import numpy as nparray = np.array([i for i in ran...

2018-03-03 10:51:48 1792

原创 【Python学习】Numpy函数repeat和tile用法

numpy数组用扩展函数repeat和tile,但是数组不能进行动态扩展,所以在调用上述函数进行扩展的时候,系统会重新分配新的空间进行存储扩展后的数据。repeat函数功能:可以对数组中的元素进行连续复制 用法:numpy.repeat(a, repeats, axis=None)a.repeat(repeats, axis=None)其中a为数组,repeats表示重复的...

2018-03-03 10:00:21 14168

原创 【深度学习理论】卷积神经网络的反卷积/转置卷积

卷积过程: 利用卷积核与覆盖的区域进行内积操作(就是对应元素相乘求和)反卷积过程:原名叫做反卷积,但是并不是很合理,所以转置卷积更合理一点。具体过程如下:(1)首先将卷积与感知野的乘积转换一下,将4*4的卷积核转换为下面的矩阵,然后4*4的原始数据转换为16*1的向量,这样子下面的矩阵一共有四行对应了四次卷积运算,0则表示在实际卷积过程中,卷积核与原图不重叠的位置。 (...

2018-03-02 20:49:31 1383

原创 【神经网络】GAN生成对抗网络

1.GAN基本原理 \qquadGAN生成式对抗神经网络,是一种非监督学习算法,通过使用两个神经网络进行博弈进而实现学习。生成对抗网络是由一个生成网络和一个判别网络构成的。生成网络从latent space中进行随机采样作为网络的输入,使得输出结果尽量类似于真是样本;判别网络的输入为真实样本或者是生成网络的输出,其目标是尽量的从真实样本中识别出由生成网络得到的生成样本。在训练的过程中,生成网络和...

2018-03-02 14:12:19 4049

原创 【神经网络】AutoEncoder自编码器

1.基本功能\qquad自编码器最大的特点是输入与输出的节点数是一致的,其功能并不是进行分类或者是回归预测,而是将原始数据转换为一种特殊的特征表示方式,在训练的过程中,依然采用反向传播算法进行参数优化,目标函数为使输出与输入之间的误差最小化。 \qquad基本功能如图,如图所示,普通神经网络是训练类别(或者离散值)与输入之间的映射关系,而AutoEncoder是将input通过encoder...

2018-03-01 22:30:19 2098

原创 【Python配置】ImportError:libcublas.so.9.0: cannot open shared object file

在ubuntu上安装tensorflow-gpu版本pip3 install tensorflow-gpu安装成功后,运行import tensorflow出现错误ImportError:libcublas.so.9.0: cannot open shared object file: No such file or directory这是因为默认安装的tens...

2018-03-01 17:59:15 28653 3

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除