- 博客(34)
- 资源 (11)
- 收藏
- 关注
原创 cv 论文(CNN相关)
最近发现很多以前看的论文都忘了,所以想写点东西来整理下之前的paper,paper主要是cv(computer vision)方向的。 第一篇:Gradient-based learning applied to document recognition。这是1998年Yann Lecun的一篇大作,是研究CNN必看的一篇文章。文中提出的Le-Net5模型很好的识别了Mnist的手写体,
2014-11-10 17:35:30 1412
原创 cv论文(SPARSE REPRESENTATION相关)
上个博文我讲了一些CNN相关的论文,比较浅显都是入门知识,这节课来总结一些稀疏表示方面的文章。至于上个博文说到的要讲的sparse coding的知识,我将会放在Deep Learning的专题里面讲解。好了,闲话不多说,下面还是列出几篇我看过的sparse representation方面的论文。 第一篇:Robust Face Recognition via Sparse Repre
2014-11-10 17:32:36 845
原创 Matlab中编译C++文件
今天在跑《Robust Object Tracking via Sparsity-based Collaborative Model》这篇文章的代码时候,发现出现如下错误: 发现错误时由于vgg_kmiter这个c类型的函数引起的,于是百度查看先关知识,原来是没有编译vgg_kmiter引起的错误,并且在此指出:由于高matlab
2014-11-10 17:32:33 3915
原创 kmeans理解
最近看到Andrew Ng的一篇论文,文中用到了Kmeans和DL结合的思想,突然发现自己对ML最基本的聚类算法都不清楚,于是着重的看了下Kmeans,并在网上找了程序跑了下。kmeans是unsupervised learning最基本的一个聚类算法,我们可以用它来学习无标签的特征,其基本思想如下: 首先给出原始数据{x1,x2,...,xn},这些数据没有被标记的。 初
2014-11-10 17:32:30 856
原创 机器学习第二课
上一个博文,我们讲了Linear Regression, gradient descent, normal equations和Locally weighted linear regression,这次博文我们重点来学习Logistic regression,这是机器学习非常重要的一种回归模型,可以说是对Linear Regression的一种离散化表示,对二分类的一种常用方法。 回顾我
2014-11-10 17:32:28 605
原创 对cost函数的概率解释
Likehood函数即似然函数,是概率统计中经常用到的一种函数,其原理网上很容易找到,这里就不讲了。这篇博文主要讲解Likelihood对回归模型的Probabilistic interpretation。在我们的回归模型中由于其他因素的影响我们的预测函数为:
2014-11-10 17:32:25 1485
原创 关于PCA降维的理解
首先,简单的介绍下PCA:PCA即机器学习里面经提到的主成分分析(Principal Component Ayalysis),一般用来对高维数据进行压缩,提取低维特征。 首先我们看下面这幅图第一幅图,假设二维平面内的六个点,我们想要寻找一个一维空间,将二维空间的点投影在一维空间里,使得点与点之间的分离性最好。从图中可以看到最佳投影方向大概是45°角的方向。第二幅图是一些三维空间的点
2014-09-27 10:14:16 1709
原创 输出字符串
//输入:每个学生一行,先输入学号,接着是各科成绩(0~5),科目门次不定,中间用空格隔开。// 输出:每个学生的平均分(一位小数)从大到小排列输出,挂科(分数// 样例:// Input:// 1, 4, 5, 4, 5// 2, 5// 3, 2, 2, 1// 4, 2, 1, 3//Output://平均分:// 2, 5// 1, 4.5
2014-09-22 15:07:44 626
原创 Minimum_Window_Substring两种方法求解
题目描述: Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n). For example, S ="ADOBECODEBANC" T ="ABC"
2014-09-19 13:46:15 628
原创 最长公共子序列
问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。考虑最长公共子序列
2014-09-19 13:30:32 659
原创 EXCEL排序
题目描述: Excel可以对一组纪录按任意指定列排序。现请你编写程序实现类似功能。 对每个测试用例,首先输出1行“Case i:”,其中 i 是测试用例的编号(从1开始)。随后在 N 行中输出按要求排序后的结果,即:当 C=1 时,按学号递增排序;当 C=2时,按姓名的非递减字典序排序;当 C=3 时,按成绩的非递减排序。当若干学生具有相同姓名或者相同成绩时,则按他们的学号
2014-09-19 13:28:18 590
原创 回文串
题目描述:程序要求从键盘读入数据。第一行是一个整数N(N<=8000),表示所给字符串的长度,第二行是所给的字符串,长度为N且只包含小写英文字母。如果所给字符串能经过若干次交换变成回文串,则输出所需的最少交换次数;否则,输出Impossible。如下面两个例子:例1:5mamad3例2:6aabbcdImpossible
2014-09-19 13:24:11 836
原创 毕向东JAVA视频讲解(第七课)
//构造函数:构建创造对象时调用的函数。作用:可以给对象进行初始化。创建对象都必须要通过构造函数初始化。一个类中如果没有定义过构造函数,那么该类中会有一个默认的空参数构造函数。如果在类中定义了指定的构造函数,那么类中的默认构造函数就没有了。一般函数和构造函数什么区别呢?构造函数:对象创建时,就会调用与之对应的构造函数,对对象进行初始化。一般函数:对象创建后,需要
2014-09-18 19:50:09 599
原创 毕向东JAVA视频讲解(第六课)
用java语言对现实生活中的事物进行描述。通过类的形式来体现的。怎么描述呢?对于事物描述通常只关注两方面。一个是属性,一个是行为。只要明确该事物的属性和行为并定义在类中即可。对象:其实就是该类事物实实在在存在的个体。类与对象之间的关系?类:事物的描述。对象:该类事物的实例。在java中通过new来创建的。*/
2014-09-18 19:44:04 623
原创 毕向东JAVA视频讲解(四五课)
内存的划分:1,寄存器。2,本地方法区。3,方法区。4,栈内存。存储的都是局部变量。而且变量所属的作用域一旦结束,该变量就自动释放。5,堆内存。存储是数组和对象(其实数组就是对象) 凡是new建立在堆中。特点:1,每一个实体都有首地址值。2,堆内存中的每一个变量都有默认初始化值,根据类型的不同而不同。整数是0,小数0.0或者0.0f,bo
2014-09-18 19:40:13 652
原创 毕向东JAVA视频讲解笔记(前三课)
for和while的特点:1,for和while可以互换。2,格式上的不同,在使用上有点小区别。如果需要通过变量来对循环进行控制,该变量只作为循环增量存在时,区别就体现出来了。if和switch的应用:if:1,对具体的值进行判断。2,对区间判断。3,对运算结果是boolean类型的表达式进行判断。switch:1,对具体的值进行判断。2
2014-09-18 19:37:54 553
原创 C++ Primer笔记整理
1. 迭代器:迭代器是一种对象,它可以看做是游标,用来遍历标准模板库中的部分或者全部元素。 每个迭代器指向容器中确定的地址,此外,迭代器还提供一些基本操作符:*、++、==、!=、=。2. 模板:是创建类或函数的蓝图或者公式,比如(STL里面的vector,map,set等),分为函数模板和类模板,函数模板是一种独立于类型的函数,类模板是一种独立于类型的类,模板是泛型编程的基础。3
2014-09-16 14:36:16 592
原创 matlab中关于DCT,DFT和DWT的相关函数
1. 离散傅立叶变换的 Matlab 实现 Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法;而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT 。这些函数的调用格式如下: A=fft(X,N,DIM) 其中,X 表示输入图像;N 表示采样间隔点,如果 X 小于该数值,那么
2014-08-28 10:07:58 14425 1
转载 map的详细用法
map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据处理能力,由于这个特性,它完成有可能在我们处理一对一数据的时候,在编程上提供快速通道。这里说下map内部数据的组织,map内部自建一颗红黑树(一种非严格意义上的平衡二叉树),这颗树具有对数据自动排序的功能,所以在map内部所有的数据都是有序的,后边我们会见识到有
2014-08-26 10:27:56 574
转载 opencv中的矩阵操作
有很多函数有mask,代表掩码,如果某位mask是0,那么对应的src的那一位就不计算,mask要和矩阵/ROI/的大小相等 大多数函数支持ROI,如果图像ROI被设置,那么只处理ROI部分 少部分函数支持COI,如果COI设置,只处理感兴趣的通道矩阵逻辑运算 void cvAnd(const CvArr* src1, const CvArr* src2, CvArr* dst
2014-08-18 15:24:30 576
转载 Matlab程序 转C++/Opencv基于Mat 不可不知的17个函数
1、matlab中的imread相当于OpenCV中的cvLoadImage(imageName, CV_LOAD_IAMGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR):读出的图像信息保持了原有图像的信息(包括通道信息和位深信息);rgb2gray相当于cvLoadImage(imageName, CV_LOAD_IMAGE_GRAYSCALE):单通道灰度图
2014-08-14 15:20:09 1229
转载 【OpenCV】基于Adaboost和Haar-like特征人脸识别
转载请注明出处:http://blog.csdn.net/xiaowei_cqu/article/details/7670703Paul Viola 和Miachael Jones等利用Adaboost算法构造了人脸检测器,称为Viola-Jones检测器,取得很好的效果。之后Rainer Lienhart和Jochen Maydt用对角特征,即Haar-like特征对检测器进行扩展。Op
2014-08-11 11:06:29 822
转载 目标检测的图像特征提取之(三)Haar特征
1、Haar-like特征 Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征。Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和。Haar特征值反映了图像的灰度变化情况。例
2014-08-11 10:43:11 603
转载 目标检测的图像特征提取之(二)LBP特征
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen,和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征; 1、LBP特征的描述 原始的LBP算子定义为在3*3的
2014-08-11 10:40:26 837
转载 目标检测的图像特征提取之(一)HOG特征
1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dal
2014-08-11 10:38:42 936
转载 c++文件流基本用法(fstream, ifstream, ostream)
前言:c++的文件流处理其实很简单,前提是你能够理解它。文件流本质是利用了一个buffer中间层。有点类似标准输出和标准输入一样。c++ IO的设计保证IO效率,同时又兼顾封装性和易用性。本文将会讲述c++文件流的用法。有错误和疏漏的地方,欢迎批评指证。需要包含的头文件: 名字空间: std也可以试用fstream提供了三个类,用来实现c++对
2014-08-09 20:28:04 1036
转载 sparse coding稀疏表达入门
最近在看sparse and redundant representations这本书,进度比较慢,不过力争看过的都懂,不把时间浪费掉。才看完了不到3页吧,书上基本给出了稀疏表达的概念以及传统的求法。我也用书中的例子来引入吧。1:矩阵A(n*m),其中n远远小于m,一副图片经过缩小或者模糊处理导致该图片所占用的空间变小了,此时用向量b来表示,A表示图片所经过的处理,X代表原图片,那么这个就
2014-08-08 15:25:33 699
转载 初识io流条件状态
一 流状态 C++中的输入输出系统负责记录每一个输入输出操作的结果信息,这些当前的状态信息被包含在io_state类型的对象中。io_state是一个枚举类型(就像open_mode一样),以下便是它包含的值。 eofbit 已到达文件尾 failbit 非致命的输入/输出错误,可挽回 badbit 致命的输入/输出错误,无法挽回这三个标志位均用一位二进制位来表示,0表
2014-08-08 15:24:10 706
转载 STL函数模板(即算法)一览
(2008-11-21 23:25:19)转载▼标签:编程cstlit分类: C++查找算法adjacent_find:找出一个串中第一个不符合次序的地方find,find_if:找出第一个符合条件的元素find_first_of:在一个串中寻找第一个与另一个串中任意一个元素相等的元素
2014-04-20 17:46:53 653
转载 图像通道与深度的理解
正文字体大小:大 中 小深度和通道的理解 (2011-03-06 16:32:59)转载▼标签: 杂谈分类: 学习 •矩阵数据类型:– CV_(S|U|F)CS = 符号整型 U = 无符号整型 F = 浮点型E.g.:CV_8U
2014-04-07 16:01:37 1138
原创 学习<opencv> CascadeClassifier::detectMultiScale 各个参数作用
CascadeClassifier::detectMultiScale(const Mat& image, vector& objects, double scaleFactor=1.1,int minNeighbors, int flag)这里先将图像变成灰度图,对它应用直方图均衡化,做一些预处理的工作。接下来检测人脸,调用detectMultiScale函数,该函数在输入图像的
2014-04-03 20:03:07 10847
window live writer的代码插件
2014-10-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人