杨辉三角(力扣)

给定一个非负整数 numRows生成「杨辉三角」的前 numRows 行。

在「杨辉三角」中,每个数是它左上方和右上方的数的和。

 

示例 1:

输入: numRows = 5
输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
示例 2:

输入: numRows = 1
输出: [[1]]

方法:

杨辉三角,是二项式系数在三角形中的一种几何排列。它是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。

杨辉三角具有以下性质:

每行数字左右对称,由 11 开始逐渐变大再变小,并最终回到 11。

第 nn 行(从 00 开始编号)的数字有 n+1n+1 项,前 nn 行共有 \frac{n(n+1)}{2} 
2
n(n+1)
​    
  个数。

第 nn 行的第 mm 个数(从 00 开始编号)可表示为可以被表示为组合数 \mathcal{C}(n,m)C(n,m),记作 \mathcal{C}_n^mC 
n
m
​    
  或 \binom{n}{m}( 
m
n
​    
 ),即为从 nn 个不同元素中取 mm 个元素的组合数。我们可以用公式来表示它:\mathcal{C}_n^m=\dfrac{n!}{m!\times (n-m)!}C 
n
m
​    
 = 
m!×(n−m)!
n!
​    
 

每个数字等于上一行的左右两个数字之和,可用此性质写出整个杨辉三角。即第 nn 行的第 ii 个数等于第 n-1n−1 行的第 i-1i−1 个数和第 ii 个数之和。这也是组合数的性质之一,即 \mathcal{C}_n^i=\mathcal{C}_{n-1}^i+\mathcal{C}_{n-1}^{i-1}C 
n
i
​    
 =C 
n−1
i
​    
 +C 
n−1
i−1
​    
 。

(a+b)^n(a+b) 
n
  的展开式(二项式展开)中的各项系数依次对应杨辉三角的第 nn 行中的每一项。

依据性质 44,我们可以一行一行地计算杨辉三角。每当我们计算出第 ii 行的值,我们就可以在线性时间复杂度内计算出第 i+1i+1 行的值。

class Solution {
    public List<List<Integer>> generate(int numRows) {
        List<List<Integer>> ret = new ArrayList<List<Integer>>();
        for (int i = 0; i < numRows; ++i) {
            List<Integer> row = new ArrayList<Integer>();
            for (int j = 0; j <= i; ++j) {
                if (j == 0 || j == i) {
                    row.add(1);
                } else {
                    row.add(ret.get(i - 1).get(j - 1) + ret.get(i - 1).get(j));
                }
            }
            ret.add(row);
        }
        return ret;
    }
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值