二叉树的深度:从根节点到该节点的最长简单路径边的条数或者节点数
使用递归法查询二叉树深度:
class Solution {
public:
int maxDepth(TreeNode* root) {
if(root==nullptr) return 0;
return 1+max(maxDepth(root->left),maxDepth(root->right));
}
};
递归三部曲:
1.确定参数与返回值,只要节点信息,返回这棵树的深度
2.确定终止条件,当节点为空的时候,就不再往下递归了
3.确定单层递归的逻辑,先求左子树的深度,再求右子树的深度
使用迭代法获取二叉树深度:
深度与层序遍历是仅仅挂钩的,层序遍历模板总结如下:
int maxDepth(TreeNode* root) {
if(root==nullptr) return 0;
queue<TreeNode*> q;
q.push(root);
//int depth=0;
while(!q.empty()) {
int size=q.size();
//depth++;
for(int i=0;i<size;i++) {
TreeNode* node=q.front();
if(node->left) q.push(node->left);
if(node->right) q.push(node->right);
q.pop();
}
}
//return depth;
}
例如,n叉树的最大深度;
根据递归法解:
class Solution {
public:
int maxDepth(Node* root) {
if(root==nullptr) return 0;
int max_=0;
for(auto next:root->children){
max_=max(max_,maxDepth(next));
}
return 1+max_;
}
};
根据迭代法解:
class Solution {
public:
int maxDepth(Node* root) {
if(root==nullptr) return 0;
queue<Node*> q;
q.push(root);
int depth=0;
while(!q.empty()) {
int size=q.size();
depth++;
for(int i=0;i<size;i++) {
Node* t=q.front();
for(auto next:t->children) {
q.push(next);
}
q.pop();
}
}
return depth;
}
};
二叉树的最小深度,之前都用前序、中序、后续的递归解法解过了;
现在再用递归法解一下:
1.确定参数与返回值,参数还是节点,返回值就是子树的最小深度
2.确定最终条件,当节点为空时,返回
3.确定单层逻辑,当这个节点为子节点时,那么可以直接返回1,如果这个节点左右子树有不为0时,需要进一步递归不为空的子树,在返回1+min;需要注意的是,限定死了肯定不会递归到空节点,除了根节点,防止min到空节点,导致计数错误。
迭代法解题,很显然,通过层序遍历,当遇到叶子节点的时候一定是最小深度;
class Solution {
public:
int minDepth(TreeNode* root) {
if(root==nullptr) return 0;
queue<TreeNode*> q;
q.push(root);
int depth=0;
while(!q.empty()) {
int size=q.size();
depth++;
for(int i=0;i<size;i++) {
TreeNode* node=q.front();
//重点判断逻辑,当这层遇到叶子节点,可以直接返回层数即深度
if(node->left==nullptr&&node->right==nullptr) {
return depth;
}
if(node->left) q.push(node->left);
if(node->right) q.push(node->right);
q.pop();
}
}
return 0;
}
};
完全二叉树的节点个数
普通二叉树做法:
1.递归法:
class Solution {
public:
int countNodes(TreeNode* root) {
if(root==nullptr) return 0;
return 1+countNodes(root->left)+countNodes(root->right);
}
};
2.迭代法,不多写了,还是就相当于遍历一遍
3.根据完全二叉树的特性:
完全二叉树要么左子树和右子树的最大深度相同,这个时候是满二叉树,要么最大深度不同,这个时候不是满的,根据递归寻找下一个满足条件。
class Solution {
public:
int countNodes(TreeNode* root) {
if(root==nullptr) return 0;
TreeNode* left=root->left;
TreeNode* right=root->right;
int leftDepth=0,rightDepth=0;
while(left!=nullptr) {
left=left->left;
leftDepth++;
}
while(right!=nullptr) {
right=right->right;
rightDepth++;
}
if(leftDepth==rightDepth) {
return (2<<leftDepth)-1;
}
return 1+countNodes(root->left)+countNodes(root->right);
}
};