最优乘车(travel.cpp)

这是一道关于旅行者在H城寻找最优乘车路线的问题,目标是从饭店到达S公园,换乘次数最少。题目描述了一个包含多个巴士线路和车站的城市交通系统,通过将线路中每个站点的距离设为1,可以转化为最短路径问题来求解。样例输入和输出展示了如何计算最少换乘次数。
摘要由CSDN通过智能技术生成

Problem A最优乘车(travel.cpp)

H城是一个旅游胜地,每年都有成千上万的人前来观光。为方便游客,巴士公司在各个旅游景点及宾馆,饭店等地都设置了巴士站并开通了一些单程巴上线路。每条单程巴士线路从某个巴士站出发,依次途经若干个巴士站,最终到达终点巴士站。 一名旅客最近到H城旅游,他很想去S公园游玩,但如果从他所在的饭店没有一路已士可以直接到达S公园,则他可能要先乘某一路巴士坐几站,再下来换乘同一站台的另一路巴士, 这样换乘几次后到达S公园。 现在用整数1,2,…N 给H城的所有的巴士站编号,约定这名旅客所在饭店的巴士站编号为1…S公园巴士站的编号为N。 写一个程序,帮助这名旅客寻找一个最优乘车方案,使他在从饭店乘车到S公园的过程中换车的次数最少。
输入(travel.in)
数据的第一行有两个数字M和N(1<=M<=100,1<=N<=500),表示开通了M条单程巴士线路,总共有N个车站。从第二行到第M+1行依次给出了第1条到第M条巴士线路的信息。其中第i+1行给出的是第i条巴士线路的信息,从左至右按运行顺序依次给出了该线路上的所有站号,相邻两个站号之间用一个空格隔开。当M=N=0是结束。
输出(travel.out)
输出数据只有一行。如果无法乘巴士从饭店到达S公园,则输出”N0”,否则输出你的程序所找到的最少换车次数,换车次数为0表示不需换车即可到达。
样例输入
3 7
6 7
4 7 3 6
2 1 3 5
样例输出
2
///我还是分割线\\\\\\\\\\\\\\\\

### 关于最优乘车问题的动态规划解法 对于最优乘车问题,可以采用一维加一维 (1D+1D) 的状态转移方程来求解。这类问题通常涉及两个维度的变化:一个是当前所处的位置或站点,另一个是时间或其他资源消耗。 #### 定义状态变量 设 `dp[i][j]` 表示到达第 i 个车站,在时刻 j 到达所需的最小费用或最短时间。这里假设输入数据已经按照时间和空间顺序排列好。 #### 初始化边界条件 初始化时考虑起始位置的情况,比如从起点出发的时间和成本设置为已知值。其他未访问过的节点则赋予无穷大表示不可达: ```python import math n, m = map(int, input().split()) # n 是车站数量,m 是最大允许等待时间 costs = [[math.inf] * (m + 1) for _ in range(n)] # costs[i][j] 表示在第i站停留到第j分钟的成本/时间 ``` #### 状态转移逻辑 核心在于构建合理的状态转换关系。当乘客处于某个特定地点并决定乘坐某辆车前往下一个目的地时,会涉及到两种可能的选择——立即上车或是稍后再走。因此,状态转移方程如下所示: \[ dp[i][t]=\min(dp[i-1][k]+c_{ik}, \text{for all } k<t)\] 其中 \( c_{ik} \) 表示从第 i-1 车站移动至第 i 车站在 t 时间内的花费或者所需时间[^1]。 为了简化计算过程,还可以引入辅助数组记录前驱信息以便最后回溯路径。 #### Python 实现代码片段 下面给出一段简单的 python 伪代码用于说明上述思路的具体实现方式: ```python def min_cost_to_reach_station(cost_matrix): """ :param cost_matrix: A list of lists where each sublist represents the time/cost to reach next station at different times. Each element is a tuple like (time, cost). :return: Minimum total travel cost/time and path taken as tuples [(station_index, arrival_time), ...]. """ num_stations = len(cost_matrix) # Initialize DP table with infinity except starting point which has zero initial cost/time. dp = [[(float('inf'), None) for _ in range(m + 1)] for __ in range(num_stations)] dp[0][0] = (0, (-1, -1)) for curr_station in range(1, num_stations): for prev_arrival_time in range(m + 1): if dp[curr_station - 1][prev_arrival_time][0] != float('inf'): for new_departure_time, transfer_cost in cost_matrix[curr_station]: actual_transfer_time = max(prev_arrival_time + 1, new_departure_time) if actual_transfer_time <= m: potential_new_value = ( dp[curr_station - 1][prev_arrival_time][0] + transfer_cost, (curr_station - 1, prev_arrival_time), ) if potential_new_value < dp[curr_station][actual_transfer_time]: dp[curr_station][actual_transfer_time] = potential_new_value best_final_state = min((v for v in dp[-1]), key=lambda x:x[0]) return reconstruct_path(best_final_state, dp) def reconstruct_path(final_state, dp_table): result = [] current_pos = final_state while current_pos[1] is not None: result.append(current_pos[::-1]) # Reverse because we're backtracking from end to start current_pos = dp_table[current_pos[1][0]][current_pos[1][1]] result.reverse() return result if __name__ == "__main__": pass # Replace this line with your test cases or main function logic here. ``` 此段代码展示了如何利用动态规划算法解决最优乘车问题,并且实现了基于给定参数矩阵的一维加一维状态转移方案。注意实际应用中需要根据具体场景调整细节部分,例如输入格式解析、边界处理等。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值