说明
本文出现的 “[n]” 均表示向下取整符号
结论
对于 i 结点的双亲结点的编号 j,有
j = [(i-2) / m]+1
题目
有满 m 叉树按照层次从上到下,每层从左到右的顺序从1开始对全部结点编号,编号为 i 的结点的双亲结点 j 的编号是多少
推导过程(修改于2021.08.26,已更正评论区提出的问题)
- 假设 i 在第 n 行 (n = 1,2,3,…),则其双亲结点 j 在第 n-1 行
- 前 n-2 行一共有 ( m^(n-2)-1 ) / (m-1) 个结点
- 前 n-1 行一共有 ( m^(n-1)-1 ) / (m-1) 个结点,
- 则在第 n 行,结点 i 前有 i - ( m^(n-1)-1 ) / (m-1) - 1 个结点
- 那么在第 n-1 行,j 结点前有
[ ( i - ( m^(n-1)-1 ) / (m-1) - 1 ) / m] 个结点 - 所以在 j 结点前,一共有
(m^(n-2)-1) / (m-1) + [ (i - (m^(n-1)-1) / (m-1) - 1) / m] 个结点,化简得,有 [(i-2) / m] 个结点 - 故 i 的双亲结点 j = [(i-2) / m]+1,证明完毕
推导过程(LaTex版本)
- 假设 i i i 在第 n n n 行 ( n = 1 , 2 , 3 , . . . ) (n = 1, 2, 3, ...) (n=1,2,3,...),则其双亲结点 j j j 在第 n − 1 n-1 n−1 行
- 前 n − 2 n-2 n−2 行一共有 m ( n − 2 ) − 1 m − 1 \frac {m^{(n-2)}-1} {m-1} m−1m(n−2)−1个结点
- 前 n − 1 n-1 n−1 行一共有 m ( n − 1 ) − 1 m − 1 \frac {m^{(n-1)}-1} {m-1}