满m叉树编号为i的结点的双亲结点编号推导

说明

本文出现的 “[n]” 均表示向下取整符号

结论

对于 i 结点的双亲结点的编号 j,有
j = [(i-2) / m]+1

题目

有满 m 叉树按照层次从上到下,每层从左到右的顺序从1开始对全部结点编号,编号为 i 的结点的双亲结点 j 的编号是多少

推导过程(修改于2021.08.26,已更正评论区提出的问题)

  1. 假设 i 在第 n(n = 1,2,3,…),则其双亲结点 j 在第 n-1
  2. n-2 行一共有 ( m^(n-2)-1 ) / (m-1) 个结点
  3. n-1 行一共有 ( m^(n-1)-1 ) / (m-1) 个结点,
  4. 则在第 n 行,结点 i 前有 i - ( m^(n-1)-1 ) / (m-1) - 1 个结点
  5. 那么在第 n-1 行,j 结点前有
    [ ( i - ( m^(n-1)-1 ) / (m-1) - 1 ) / m] 个结点
  6. 所以在 j 结点前,一共有
    (m^(n-2)-1) / (m-1) + [ (i - (m^(n-1)-1) / (m-1) - 1) / m] 个结点,化简得,有 [(i-2) / m] 个结点
  7. i 的双亲结点 j = [(i-2) / m]+1,证明完毕

推导过程(LaTex版本)

  1. 假设 i i i 在第 n n n ( n = 1 , 2 , 3 , . . . ) (n = 1, 2, 3, ...) (n=1,2,3,...),则其双亲结点 j j j 在第 n − 1 n-1 n1
  2. n − 2 n-2 n2 行一共有 m ( n − 2 ) − 1 m − 1 \frac {m^{(n-2)}-1} {m-1} m1m(n2)1个结点
  3. n − 1 n-1 n1 行一共有 m ( n − 1 ) − 1 m − 1 \frac {m^{(n-1)}-1} {m-1}
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值