排序算法简述

常见排序算法基本信息
在这里插入图片描述

一、冒泡排序

1.1 冒泡排序简介

    冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。
    冒泡排序还有一种优化算法,就是立一个 flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。但这种改进对于提升性能来说并没有什么太大作用。

1.2 算法执行步骤与图解

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  3. 针对所有的元素重复以上的步骤,除了最后一个。
  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
    在这里插入图片描述

1.3 java程序实现

public int[] BubbleSort(int[] nums) {
   
	int len = nums.length;
	for (int i = 0; i < len; i++) {
   
    	boolean flag = true;
        for (int j = 0; j < len - i - 1; j++) {
   
        	if (nums[j] > nums[j + 1]) {
   
            	flag = false;
                int temp = nums[j];
                nums[j] = nums[j + 1];
                nums[j + 1] = temp;
             }
        }
        if (flag) {
   
        	break;
		}
	}
	return nums;
}

二、选择排序

2.1 选择排序简介

    选择排序是一种简单直观的排序算法,它的工作原理是每一次从待排序的数据元素中选出最小(最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到全部待排序的数据元素排完。选择排序是不稳定的排序方法。

2.2 算法执行步骤与图解

  1. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
  2. 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  3. 重复第二步,直到所有元素均排序完毕。
    在这里插入图片描述

2.3 java程序实现

public int[] SelectionSort(int[] nums) {
   
	int len = nums.length;
	for (int i = 0; i < len; i++) {
   
		int index = i;
		for (int j = i + 1; j < len; j++) {
   
			if (nums[index] > nums[j]) {
   
				index = j;
			}
		}
		if (index != i) {
   
			int temp = nums[i];
			nums[i] = nums[index];
			nums[index] = temp;
		}
	}
	return nums;
}

三、插入排序

3.1 插入排序简介

    对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到插完所有元素为止。
    插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率。所以在数据量小数据基本有序的情况下用插入排序最优。

3.2 算法执行步骤与图解

  1. 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
  2. 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)
    在这里插入图片描述

3.3 java程序实现

public int[] InsertSort(int[] nums) {
   
	int len = nums.length;
	//i表示前i个数字为一个有序序列
	for (int i = 1; i < len; i++) {
   
		//记录第i个数字(要插入有序序列,边比较,边移位,即将第i个位置视为temp)
		int temp = nums[i];
		int j = i - 1;
		//遍历有序序列,直到到达有序序列边界或者找到比自己小的序列为止
		while (j >= 0 && temp < nums[j]) {
   
			//在找的过程中边移位
			nums[j + 1] = nums[j];
			j--
<think>好的,我现在需要回答用户关于冒泡排序算法工作原理及步骤的问题。用户之前已经提供了两个关于冒泡排序的引用,但主要是关于原理和优化的,我需要先理清冒泡排序的基本流程。 首先,冒泡排序的基本思想是通过重复遍历待排序的列表,比较相邻元素的大小,如果顺序错误就交换它们。这样每一轮遍历会将最大的元素“冒泡”到末尾。这个过程类似于气泡从水底升到水面,因此得名。 接下来,我需要分步骤解释这个过程。比如,第一轮遍历后,最大的元素会排在最后;第二轮则处理剩下的元素,次大的元素会排在倒数第二位,依此类推。需要说明每次遍历的范围逐渐缩小,因为末尾的元素已经排好序了。 然后,关于实现部分,用户可能需要一个示例代码。虽然用户之前提供的引用是关于C++的,但用户给出的示例是Python的快速排序,所以或许用Python实现更合适。我需要确保代码正确,使用嵌套循环,外层循环控制遍历次数,内层循环进行相邻比较和交换。 还要注意时间复杂度的分析,最好提到最好情况、平均情况和最坏情况下的时间复杂度,都是$O(n^2)$,但优化后最好情况可以降到$O(n)$。引用中的优化方法,比如提前终止,可以在实现部分加入一个标志位来检测某一轮是否已经有序,从而提前结束排序。 最后,根据用户的要求,生成相关问题。可能需要包括优化方法、复杂度分析、与其他排序算法的比较等。确保问题相关且有深度,帮助用户进一步学习。 现在需要检查LaTeX格式是否正确,比如变量和公式是否正确使用$...$,独立公式是否用$$...$$。例如,时间复杂度应该用行内公式,而如果有独立公式可能需要单独成段,但冒泡排序可能不需要复杂的数学公式,所以可能主要用行内即可。 还要注意引用标识,比如在提到优化方法时,末尾添加引用标识[^1][^2],但用户提供的引用是站内的,可能需要适当关联。不过用户说明引用仅供参考,所以可能不需要过多依赖,重点还是回答用户的问题。 最后确保回答结构清晰,分点说明原理、步骤、实现和优化,代码用正确的格式,并生成相关问题。</think>### 冒泡排序算法工作原理及步骤 #### 一、基本原理 冒泡排序一种**基于相邻元素比较和交换**的排序算法。其核心思想是通过重复遍历列表,每次比较相邻的两个元素,若顺序错误则交换它们,使得较大(或较小)的元素逐渐“浮”到列表末端[^1]。 #### 二、具体步骤 1. **遍历列表**:从列表第一个元素开始,依次比较相邻元素的值。 2. **比较与交换**:若当前元素大于其后一个元素(以升序排序为例),则交换两者的位置。 3. **缩小遍历范围**:每一轮遍历后,列表末尾的最后一个元素已为当前最大值,因此下一轮遍历时无需再比较已排序的部分。 4. **重复过程**:持续上述操作,直到所有元素有序(即某一轮遍历中未发生任何交换)。 #### 三、时间复杂度分析 - **最坏情况**(完全逆序):$O(n^2)$ - **平均情况**:$O(n^2)$ - **最好情况**(已有序):未优化时为$O(n^2)$,优化后可降至$O(n)$[^2]。 #### 四、基础实现(Python示例) ```python def bubble_sort(arr): n = len(arr) for i in range(n): # 标记本轮是否发生交换 swapped = False for j in range(0, n-i-1): if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j] swapped = True # 若未交换,说明已有序,提前终止 if not swapped: break return arr ``` #### 五、优化方法 1. **提前终止**:通过`swapped`标志检测是否已有序,减少无效遍历[^1]。 2. **记录最后交换位置**:进一步缩小下一轮遍历的边界。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值