http://acm.hdu.edu.cn/showproblem.php?pid=1160
先介绍一下题目的大意:
输入一串序列:
w1 s1
w2 s2
.... ....
wn sn
要求输出w严格递增 ,s严格递减的序列的最大长度。
并且按顺序输出下标。
样例
输入:
6008 1300
6000 2100
500 2000
1000 4000
1100 3000
6000 2000
8000 1400
6000 1200
2000 1900
输出:
4
4
5
9
7
之前做过一道求最大递增子串的题目,感觉和这道题目有些相似,只不过这道题目是双向并列的,但是想一下就会发现其实只需要对其中一组变量进行排序,就转化为了最大递增子串的问题了,当然这道题目还有一些细节需要注意。
比如要用结构体保存一下当初的编号,防止排序后编号丢失。还有就是要输出路径,所以要开一个数组记录上一个节点的位置。在进行路径输出的时候利用递归就可以了。
其实做这道题的过程还是不太顺利的,一开始DP公式没写对,调了半天才恍然大悟,不过也确实加深了自己的认识。
这道题应该算是DP入门级的题目了,还算自己能做出来,难的直接构造不出来啊,理解不了啊,智商不够啊啊!
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
using namespace std;
struct mouse
{
int w,s;
int n;
}m[10005];
int n;
int dp[1005]={0};
int fa[1005]={0};
bool cmp(mouse a,mouse b)
{
return a.w<b.w;
}
int p(int i)
{
if(fa[i]!=i)
{
p(fa[i]);
printf("%d\n",m[i].n);
}
else printf("%d\n",m[i].n);
}
int main()
{
int i=0,j,f,dp_max,max=0;
while(scanf("%d%d",&m[i].w,&m[i].s)!=EOF)
{
m[i++].n=i+1;
}
n=i;
sort(m,m+n,cmp);
dp[0]=1;
for(i=1;i<n;i++)
{
for(j=0,dp_max=0,f=i;j<i;j++)
{
if( dp[j]>dp_max && m[j].s>m[i].s && m[i].w!=m[j].w )
dp_max=dp[j],f=j;
}
fa[i]=f;
dp[i]=dp_max+1;
if(dp[i]>dp[max]) max=i;
}
printf("%d\n",dp[max]);
p(max);
return 0;
}