其实就是扩展归并排序。
适用于处理偏序问题。
算法
对于三维或以上偏序,我们采用CDQ分治。
第一个思想是排序。
先使第一维有序,然后将区间分成两半后两边各自按第二维排序,可以保证左一半的第一维小于右一半。
然后就可以对左右做类似归并排序的事情,用左边更新右边的答案。
更新过程中用树状数组保证第三维有序。
时间复杂度 O ( l o g n ∗ n l o g n ) = O ( n l o g 2 n ) O(logn*nlogn)=O(nlog^2n) O(logn∗nlogn)=O(nlog2n)
技巧
大概就是可以把一些二位数点问题变化为横纵坐标,时间的三维偏序问题处理。
对于高维偏序可以CDQ套CDQ,但是5维以上还不如K-D tree和n^2枚举。
题目
一.洛谷P4169 [Violet]天使玩偶/SJY摆棋子
因为是曼哈顿距离,只考虑
x
≤
q
x
,
y
≤
q
y
x\leq qx,y\leq qy
x≤qx,y≤qy的点中
x
+
y
x+y
x+y的最大值,然后旋转坐标系就可以统计到所有点。
我们将一个询问拆成了四个偏序问题,CDQ即可。
二.洛谷P5459 [BJOI2016]回转寿司
统计前缀和
A
i
A_i
Ai,然后前缀和做差统计区间
保证
l
<
r
,
L
<
A
r
−
A
l
−
1
<
R
l<r,L<A_r-A_{l-1}<R
l<r,L<Ar−Al−1<R
那么可以转化为
A
l
−
1
+
L
<
A
r
<
A
l
−
1
+
R
{A_{l-1}+L<A_r<A_{l-1}+R}
Al−1+L<Ar<Al−1+R
但其实可以发现
l
<
r
l<r
l<r并没有什么用,因为前缀和是单调的
所以其实可以类似二维偏序
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn)
或者采用不排序直接归并的CDQ实现