CDQ小结

本文探讨了CDQ分治方法在处理偏序问题中的应用,特别是针对三维及以上的偏序。通过先排序第一维,再对半分割并按第二维排序,保证了部分有序性。在更新过程中利用树状数组维持第三维的有序。文章举例说明了如何将二维数点问题和前缀和问题转化为偏序问题,并使用CDQ分治解决,指出在五维以上问题中可能更适合使用K-Dtree或n^2枚举。此外,还介绍了洛谷上的两个具体题目,展示了CDQ分治在实际问题中的运用。
摘要由CSDN通过智能技术生成

其实就是扩展归并排序。
适用于处理偏序问题。

算法

对于三维或以上偏序,我们采用CDQ分治。
第一个思想是排序。
先使第一维有序,然后将区间分成两半后两边各自按第二维排序,可以保证左一半的第一维小于右一半。
然后就可以对左右做类似归并排序的事情,用左边更新右边的答案。
更新过程中用树状数组保证第三维有序。

时间复杂度 O ( l o g n ∗ n l o g n ) = O ( n l o g 2 n ) O(logn*nlogn)=O(nlog^2n) O(lognnlogn)=O(nlog2n)


技巧

大概就是可以把一些二位数点问题变化为横纵坐标,时间的三维偏序问题处理。

对于高维偏序可以CDQ套CDQ,但是5维以上还不如K-D tree和n^2枚举。


题目

一.洛谷P4169 [Violet]天使玩偶/SJY摆棋子
因为是曼哈顿距离,只考虑 x ≤ q x , y ≤ q y x\leq qx,y\leq qy xqx,yqy的点中 x + y x+y x+y的最大值,然后旋转坐标系就可以统计到所有点。
我们将一个询问拆成了四个偏序问题,CDQ即可。


二.洛谷P5459 [BJOI2016]回转寿司
统计前缀和 A i A_i Ai,然后前缀和做差统计区间
保证 l < r , L < A r − A l − 1 < R l<r,L<A_r-A_{l-1}<R l<r,L<ArAl1<R
那么可以转化为 A l − 1 + L < A r < A l − 1 + R {A_{l-1}+L<A_r<A_{l-1}+R} Al1+L<Ar<Al1+R
但其实可以发现 l < r l<r l<r并没有什么用,因为前缀和是单调的
所以其实可以类似二维偏序 O ( n l o g n ) O(nlogn) O(nlogn)
或者采用不排序直接归并的CDQ实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值