二叉树的相关算法


二叉树(二叉查找树)是这样一类的树,父节点的左边孩子的key都小于它,右边孩子的key都大于它。

二叉树在查找和存储中通常能保持logn的查找、插入、删除,以及前驱、后继,最大值,最小值复杂度,并且不占用额外的空间。

本文将从二叉树的搜索及相关算法


#include<stack>
#include<queue>

using namespace std;

class tree_node{
public:
	int key;
	tree_node *left;
	tree_node *right;
	int tag;

	tree_node(){
		key = 0;
		left = right = NULL;
		tag = 0;
	}
	~tree_node(){}
};

void visit(int value){
	printf("%d\n", value);
}


// 插入
tree_node * insert_tree(tree_node *root, tree_node* node){
	if (!node){
		return root;
	}
	if (!root){
		root = node;
		return root;
	}
	tree_node * p = root;
	while (p){
		if (node->key < p->key){
			if (p->left){
				p = p->left;
			}
			else{
				p->left = node;
				break;
			}
		}
		else{
			if (p->right){
				p = p->right;
			}
			else{
				p->right = node;
				break;
			}
		}
	}
	return root;
}


// 查询key所在node
tree_node* search_tree(tree_node* root, int key){
	tree_node * p = root;
	while (p){
		if (key < p->key){
			p = p->left;
		}
		else if (key > p->key){
			p = p->right;
		}

		else{
			return p;
		}
	}
	return NULL;
}


// 创建树
tree_node* create_tree(tree_node *t, int n){
	tree_node * root = t;
	for (int i = 1; i<n; i++){
		insert_tree(root, t + i);
	}
	return root;
}


//  节点前驱

tree_node* tree_pre(tree_node* root){
	if (!root->left){ return NULL; }
	tree_node* p = root->left;
	while (p->right){
		p = p->right;
	}
	return p;
}

//  节点后继
tree_node* tree_suc(tree_node* root){
	if (!root->right){ return NULL; }
	tree_node* p = root->right;
	while (p->left){
		p = p->left;
	}
	return p;
}

// 中序遍历
void tree_walk_mid(tree_node *root){
	if (!root){ return; }
	tree_walk_mid(root->left);
	visit(root->key);
	tree_walk_mid(root->right);
}


// 中序遍历非递归

void tree_walk_mid_norecursive(tree_node *root){
	if (!root){ return; }
	tree_node* p = root;
	stack<tree_node*> s;
	while (!s.empty() || p){
		while (p){
			s.push(p);
			p = p->left;
		}
		if (!s.empty()){
			p = s.top();
			s.pop();
			visit(p->key);
			p = p->right;
		}
	}
}


// 前序遍历
void tree_walk_pre(tree_node *root){
	if (!root){ return; }
	visit(root->key);
	tree_walk_pre(root->left);
	tree_walk_pre(root->right);
}

// 前序遍历非递归
void tree_walk_pre_norecursive(tree_node *root){
	if (!root){ return; }
	stack<tree_node*> s;
	tree_node* p = root;
	s.push(p);
	while (!s.empty()){
		tree_node *node = s.top();
		s.pop();
		visit(node->key);
		if (node->right){
			s.push(node->right);
		}
		if (node->left){
			s.push(node->left);
		}
	}
}

// 后序遍历
void tree_walk_post(tree_node *root){
	if (!root){ return; }
	tree_walk_post(root->left);
	tree_walk_post(root->right);
	visit(root->key);
}

// 后序遍历非递归
void tree_walk_post_norecursive(tree_node *root){
	if (!root){ return; }
	stack<tree_node*> s;
	s.push(root);
	while (!s.empty()){
		tree_node * node = s.top();
		if (node->tag != 1){
			node->tag = 1;
			if (node->right){
				s.push(node->right);
			}
			if (node->left){
				s.push(node->left);
			}
		}
		else{
			visit(node->key);
			s.pop();
		}
	}
}





// 层级遍历非递归
void tree_walk_level_norecursive(tree_node *root){
	if (!root){ return; }
	queue<tree_node*> q;
	tree_node* p = root;
	q.push(p);
	while (!q.empty()){
		tree_node *node = q.front();
		q.pop();
		visit(node->key);
		if (node->left){
			q.push(node->left);
		}
		if (node->right){
			q.push(node->right);
		}
	}
}


// 拷贝树
tree_node * tree_copy(tree_node *root){
	if (!root){ return NULL; }
	tree_node* newroot = new tree_node();
	newroot->key = root->key;
	newroot->left = tree_copy(root->left);
	newroot->right = tree_copy(root->right);
	return newroot;
}


// 拷贝树

tree_node * tree_copy_norecursive(tree_node *root){
	if (!root){ return NULL; }
	tree_node* newroot = new tree_node();
	newroot->key = root->key;
	stack<tree_node*> s1, s2;
	tree_node *p1 = root;
	tree_node *p2 = newroot;
	s1.push(root);
	s2.push(newroot);
	while (!s1.empty()){
		tree_node* node1 = s1.top();
		s1.pop();
		tree_node* node2 = s2.top();
		s2.pop();
		if (node1->right){
			s1.push(node1->right);
			tree_node* newnode = new tree_node();
			newnode->key = node1->right->key;
			node2->right = newnode;
			s2.push(newnode);
		}
		if (node1->left){
			s1.push(node1->left);
			tree_node* newnode = new tree_node();
			newnode->key = node1->left->key;
			node2->left = newnode;
			s2.push(newnode);
		}
	}
	return newroot;
}


int main(){
	tree_node T[6];
	for (int i = 0; i < 6; i++){
		T[i].key = i*2;
	}
	T[0].key = 5;

	tree_node* root = create_tree(T, 6);

	//tree_walk_mid(root);
	//tree_walk_mid_norecursive(root);

	//tree_walk_pre(root);
	//tree_walk_pre_norecursive(root);

	//tree_walk_post(root);
	//tree_walk_post_norecursive(root);

	//tree_walk_level_norecursive(root);


	visit(search_tree(root, 6)->key);
	visit(tree_pre(root)->key);
	visit(tree_suc(root)->key);

	//tree_node* newroot = tree_copy_norecursive(root);
	//tree_walk_mid(newroot);

	return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值