问题描述
X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
1 2 3
2 1 5
样例输出
14
这个题在赛场上没做出来,感觉自己还是太虚,即使对题目有思路,还是不能很快理清头绪。
dp[i][j][c][val]表示在i,j位置上持有c件宝物单件最大价值为val时的方案数,可以由dp[i( - 1)][j( - 1)][c( - 1)][ [* <= val]推出来。
有一点需要注意:一开始没注意到Ci可以取值为0,在最内部第二个循环当当前值为0时就直接跳过了,也就是说值为0的点无法成为第一个被取的点,于是要特殊处理一下。把第二个样例里的1改为0就会发现这个情况。关于特殊处理有一点,因为问题是由于Ci == 0导致的,可以在输入值时把它加1,就解决了。下面的代码更中规中矩一点,用的if处理。
#include<stdio.h>
#include<string.h>
#define N 55
#define MOD 1000000007
int map[55][55];
int dp[55][55][15][15];
int main(void)
{
// freopen("in.txt", "r", stdin);
int n, m, k;
int i, j, c, val, vMax;//vMax是全局的价值最大值
scanf("%d%d%d", &n, &m, &k);
vMax = 0;
for(i = 1; i <= n; i++)
{
for(j = 1; j <= m; j++)
{
scanf("%d", &map[i][j]);
if(vMax < map[i][j])
{
vMax = map[i][j];
}
}
}
//因为这里将值赋给了要在循环中出现的值,所以下面全都要用+=,不能=赋值
dp[1][1][0][0] = 1;//设初值,当不取(1, 1)上的宝物时
dp[1][1][1][map[1][1]] = 1;//当取(1, 1)上的宝物时
for(i = 1; i <= n; i++)
{
for(j = 1; j <= m; j++)
{
dp[i][j][0][0] += dp[i][j - 1][0][0] + dp[i - 1][j][0][0];//c == 0到达(i, j)
dp[i][j][0][0] %= MOD;
for(c = 1; c <= k; c++)
{
for(val = 0; val <= vMax; val++)//忽略当前宝物
{
dp[i][j][c][val] += dp[i][j - 1][c][val] + dp[i - 1][j][c][val];
dp[i][j][c][val] %= MOD;
}
if(c == 1)//取当前宝物为第一个宝物
{
dp[i][j][1][map[i][j]] += dp[i][j - 1][0][0];
dp[i][j][1][map[i][j]] %= MOD;
dp[i][j][1][map[i][j]] += dp[i - 1][j][0][0];
dp[i][j][1][map[i][j]] %= MOD;
}
else//取当前宝物
{
for(val = 0; val < map[i][j]; val++)
{
dp[i][j][c][map[i][j]] += dp[i][j - 1][c - 1][val];
dp[i][j][c][map[i][j]] %= MOD;
dp[i][j][c][map[i][j]] += dp[i - 1][j][c - 1][val];
dp[i][j][c][map[i][j]] %= MOD;
}
}
}
}
}
int sum = 0;
for(i = 0; i <= vMax; i++)
{
sum += dp[n][m][k][i];
sum %= MOD;
}
printf("%d", sum);
return 0;
}