自然语言处理
Track48
zhengzhaozuo
展开
-
Bert
介绍了Transformer,下一个就是Bert,一个巨大成功的预训练模型,上图Bert全名为Bidirectional Encoder Representations from Transformers,E1...En是单个字或者词,大部分都是字为单位,Trm是一个transformer,T1...Tn是最终计算的隐藏层。因为再注意力矩阵中每个词都能学习到句子中其他词的相关程度,所以是双向。没有用到decoderBert有两个训练目标:第一个任务:MaskedLM随机15%遮盖并...原创 2020-11-06 21:38:00 · 471 阅读 · 0 评论 -
Transformer
Transformer是一种Seq2Seq模型,Bert就是从Transformer衍生出来的一种模型,在一些NLP任务上已经超过了人类表现。应用方式主要是:第一先训练出预训练模型,第二步是把预训练模型应用到下游任务中和LSTM区别:LSTM的训练是一种迭代方法,必须要等到上一个字过完LSTM单元才可以处理下一个单元的内容,但是Transformer是可以进行并行化的处理的,所有的字全部一起进行训练,大大加快了训练的效率;通过位置嵌入positional encoding 来理解语言的顺序学习到原创 2020-11-06 19:17:15 · 414 阅读 · 0 评论 -
随机森林 Word2Vec 文本分类
数据集是来自kaggle semantic classification任务的1、加载文件import pandas as pdtrain = pd.read_csv(r"labeledTrainData\labeledTrainData.tsv", header=0, delimiter="\t", quoting=3)unlabeled=pd.read_csv(r"unlabeledTrainData\unlabeledTrainData.tsv", header=0, delimiter原创 2020-10-29 12:20:26 · 2228 阅读 · 0 评论 -
Word2vec tutorial
API doc:https://radimrehurek.com/gensim/models/word2vec.html其他API:Doc2vec:https://radimrehurek.com/gensim/models/doc2vec.html#gensim.models.doc2vec.Doc2VecFastText:https://radimrehurek.com/gensim/models/fasttext.html#gensim.models.fasttext.FastText原创 2020-10-29 10:46:49 · 160 阅读 · 0 评论 -
Pytorch 学习2
1、torch.range(num1,num2)莫名其妙,pytorch这个range函数和python内嵌的不一样,是[ start , end ]第一,必须有两个参数第二,包括第二个参数2、tensor.unsqueeze(dim )在第dim维外增加一个维度,比如原来是(2,3),假如dim是0,输出是[1,2,3],假如dim是1,输出是[2,1,3],假如是2,输出是[2,3,1]3、tensor.squeeze(dim)可以减掉维度,但是只有维度为1时才.原创 2020-10-24 00:03:04 · 129 阅读 · 0 评论 -
Stemming词干提取 和 Lemmatization 词形还原
词干提取:基于规则、相对原始的操作,使用一些基本规则,可以有效地将任何token进行削减,得到其主干;比如eat具有不同地变体,e.g.eating eaten eats。在大部分时候,在这些变体之间做区分没有意义。因此需要stemming将单词归结到单词的根。对于一些复杂的NLP任务,有必要使用词形还原lemmatization代替stemming,词形还原更健壮,结合语法变体,得到单词的根词形还原:使用一种更有条理的方式,根据给每个单词的词性,应用不同的标准化规则,得到词根单元(词元).原创 2020-10-22 13:19:11 · 762 阅读 · 0 评论 -
UNILM 统一预训练模型 v1.0
这篇paper是研究生读的第一篇,过了蛮久了,因为准备重新写博客,所以拿出来回顾一下之前还给这篇做了PPT,paper名字是Unified Language Model Pre-training for Natural Language Understanding and Generation ,可以翻译成用作NLU和NLG的统一预训练模型,这篇论文是2019年发表的在NLP领域有些成就的一篇文章。0、Abstract本文介绍了一种可同时被NLU和NLG任务微调的预训练模型,使用了三种不用的语言原创 2020-10-15 15:29:44 · 967 阅读 · 1 评论