下载地址:https://u20150046.ctfile.com/fs/20150046-376633160
By Lydia T. Liu, Sarah Dean, Esther Rolf, Max Simchowitz, Moritz Hardt (2018)
论文摘要
机器学习中的公平性主要是在静态的分类设置进行研究,而不考虑决策如何随时间改变基础样本总体。传统观点认为,公平性标准能够促进它们所保护的群体的长期利益。
我们研究了静态公平标准与幸福感的时间指标是如何相互作用的,如长期改善、停滞和利益变量下降。我们证明,即使在单步反馈模型中,一般的公平标准也不会随着时间的推移而促进改善,并且不受约束的目标不仅不会促进改善,甚至可能造成损害。我们描述了三个标准的延迟影响,对比了这些标准表现出不同行为的机制。此外,我们还发现一种自然形式的测量误差扩大了公平标准发挥有利作用的机制。
我们的结果突出了测量和时间建模在公平标准评估中的重要性,提出了一系列新的挑战和权衡取舍。
概要总结
当使用基于分数的机器学习算法来决定谁可以获得机会(例如贷款、奖学金、工作),谁得不到机会时,目标是确保不同人口群体被公平对待。伯克利人工智能研究实验室的研究人员表明,由于某些延迟的结果,使用共同的公平标准实际上可能会损害代表性不足或处境不利的群体。因此,他们鼓励在设计一个“公平”的机器学习系统时考虑长期结果。
核心思想
考虑实施公平标准的延迟结果显示,这些标准可能对他们旨在保护的群体的长期利益有不利影响。由于公平标准可能会对弱势群体造成主动的伤害,解决的办法可以是使用结果最大化的决策规则,或者一个结果模型。
最重要的成果
1.表明了人口均等、机会均等等公平标准可以为弱势群体带来任何可能的结果,包括改善、停滞或恶化,而遵循最优无约束选择政策(如利润最大化),则永远不会给弱势群体带来恶化的结果(主动伤害)。
2.通过FICO信用评分数据的实验支持了理论预测。
3.考虑了硬公平约束的替代方案。
AI社区的评价
1.这篇论文获得了ICML 2018最佳论文奖,ICML是最重要的机器学习会议之一。
2.该研究表明,有时正面的歧视会适得其反。
未来研究方向
1.考虑超出群体平均变化影响的其他特征(如方差、个体水平结果)。
2.研究结果优化对建模和测量误差的鲁棒性。
可能的应用
通过从公平性标准强加的约束转向结果建模,企业可能会开发出更有利可图、也“更公平”的ML系统,用于放贷或招聘。