在数据分析和经济研究中,动态数列是一种重要的工具,用于观察和分析数据随时间的变化趋势。本文将介绍如何构建和分析动态数列,并通过一个具体的例子来展示整个过程。
首先,我们需要获取时间序列数据。在这个例子中,我们将使用Pandas库来读取Excel文件中的数据。我们首先导入Pandas库,并设置输出精度,然后读取两个数据集:YQdata和QTdata。
import pandas as pd #加载数据分析包pandas
pd.set_option('display.precision',4) #设置pandas输出精度
YQdata=pd.read_excel('./data/DaPy_data.xlsx','YQdata',index_col=0)
QTdata=pd.read_excel('./data/DaPy_data.xlsx','QTdata',index_col=0)
接下来,我们可以使用plot函数来可视化季度序列数据。
QTdata.plot(grid=True)
为了构建年度型序列数据,我们需要生成一个年度变量,并对数据进行分组和求和。
QTdata['Year']=QTdata.index.str[:4]
YGDP=QTdata.groupby(['Year'])['GDP'].sum()
YGDP.plot(grid=True)
现在,我们已经构建了年度型序列数据。接下来,我们将分析绝对动态数列,包括定基增长量和环比增长量。
YGDPds=pd.DataFrame(YGDP); #构建年度动态序列框
YGDPds['定基数']= YGDP-YGDP[:1].values
YGDPds['环基数']= YGDP-YGDP.shift(1)
我们还可以分析相对动态数列,包括定基发展速度(定基比)和环比发展速度(环基比)。
YGDPds['定基比']=YGDP/YGDP[:1].values
YGDPds['环基比']=YGDP/YGDP.shift(1)
最后,我们计算平均动态数列,即平均增长量。
n=len(YGDP)
ADR=(YGDP[-1:].values/YGDP[:1].values)**(1/n)
print('\n 平均增长量 = %5.3f' % ADR)
通过以上步骤,我们已经成功地构建并分析了动态数列。这些分析结果可以帮助我们更好地理解数据随时间的变化趋势,为经济研究和决策提供有力支持。
总结起来,动态数列的构建和分析是一个复杂但非常有用的过程。通过使用Pandas库和相关的数据处理技术,我们可以轻松地完成这个任务,并从中获得有价值的信息。