Audacity插件开发:立体声音量独立控制基础

1 Audacity插件开发:立体声音量独立控制基础

1.1 立体声音量独立控制基础

本页面介绍如何使用Nyquist独立更改左右立体声音道的音量。

如前所述,Audacity音轨的音频数据 <sound> 会通过变量 *track* 传递给Nyquist。如果音轨是单声道(只有一个声道),那么 <sound> 就是变量 *track* 的值。然而,对于立体声音轨,有两个声音,它们作为数组的两个元素传递给Nyquist,数组名是 *track*

要访问数组的特定元素,我们使用 (aref) 命令。

由于立体声音轨有2个声道,数组 *track* 有两个编号为0和1的元素。第0个元素是左声道的音频数据,另一个元素包含右声道的音频数据。

要访问左声道的音频数据,可以使用:

(aref *track* 0)

要访问右声道的音频数据,可以使用:

(aref *track* 1)

如前一教程所述,我们可以使用 (scale) 函数放大声音。对于单声道音轨,如果我们想将声音的振幅减半,只需输入:

(scale 0.5 *track*)

如果我们在立体声音轨上使用此指令,该函数会依次应用于 *track* 的每个元素,所以两个声道的振幅都会变为原来的一半。然而,如果我们想单独访问声道,还需要知道如何将两个不同的声音发送回Audacity中的同一条音轨。

要将两个不同的声音发送到Audacity中的立体声音轨,我们必须创建一个包含两个元素的数组。第一个元素将包含左声道的 <sound>,第二个元素将包含右声道的声音。最简单的方法是使用 vector 函数:

(vector <left channel> <right channel>)

<left channel><right channel> 将是我们从Nyquist发送的声音。

为了进行实践,我们将仅放大立体声音轨的左声道。

  1. 打开一个短的立体声音轨。
  2. 从“效果”菜单中选择“Nyquist Prompt”,并输入以下代码:
(vector
  (scale 2.0 (aref *track* 0))
  (aref *track* 1)
)

注意数组的两个元素在 vector 函数的括号内。

此数组的第0个元素是原始左声道 (aref *track* 0) ,其振幅已按比例放大2倍,这将成为新的左声道。此数组的下一个元素是原始右声道 (aref *track* 1) ,它将作为新的右声道原封不动地发送回去。

除了使用 (scale) 函数,我们还可以使用 mult 函数。这与使用 scale 函数几乎相同,只是我们不需要先指定乘法因子。(mult 2.0 *track*)(mult *track* 2.0) 是相同的。

我们的第二个示例是将左声道的振幅放大到原来的一半,将右声道的振幅放大到原来的两倍:

(vector
  (mult (aref *track* 0) 0.5)
  (mult (aref *track* 1) 2.0)
)

作者声明:本文用于记录和分享作者的学习心得,可能有部分文字或示例来自AI平台,如:豆包、DeepSeek(硅基流动)(注册链接)等,由于本人水平有限,难免存在表达错误,欢迎留言交流和指教!
Copyright © 2022~2025 All rights reserved.

基于机器学习的音频情感分析系统Python源码(高分项目),能够从语音中识别出四种基本情感:愤怒、快乐、中性和悲伤。个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统P
内容概要:本文介绍了《车联网(智能网联汽车)产业发展行动计划(2025-2030年)》的内容,涵盖发展背景、现状、目标、重点任务及保障措施。全球智能网联汽车成为汽车产业变革的核心方向,中国通过“车路云一体化”试点等初步形成全产业链生态优势。面对技术瓶颈、标准缺失、商业模式不清等挑战,中国设定了到2030年建成全球领先智能网联汽车产业体系的目标,包括L3级自动驾驶规模化商用、智能网联汽车新增产值突破1万亿元等阶段性目标。重点任务涉及技术突破(如AI、通信、芯片等)、基础设施建设(如智能化道路、云控平台等)、标准与法规完善、示范应用与商业化、产业协同与生态构建。保障措施包括政策支持、人才培育、安全保障和宣传推广。最终目标是实现经济效益、社会效益和战略意义,推动中国从“跟跑”向“领跑”跨越。; 适合人群:对智能网联汽车行业感兴趣的各界人士,包括政府决策者、企业管理人员、科研人员、投资者等。; 使用场景及目标:①帮助政府决策者了解智能网联汽车的发展方向和政策措施;②为企业管理人员提供行业趋势和发展机会的参考;③为科研人员明确研究重点和技术突破方向;④为投资者提供投资领域的指导。; 其他说明:本文详细阐述了智能网联汽车产业的发展规划,强调技术创新、生态协同和安全可控,旨在推动中国智能网联汽车产业的全面发展,为全球汽车产业变革贡献中国方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值