Google 机器学习(一) 安装 Anaconda 以及 Scikit-learn 等必备库

Google深度学习系列视频

谷歌开发者视频中文频道:https://www.youtube.com/playlist?list=PLwv-rHS37fS9s3udyMoPPpaROL4u_tF5k

____tz_zs学习笔记

 

Google深度学习需要安装Scikit-learn库

一、Scikit-learn

Scikit-learn官网:http://scikit-learn.org/stable/install.html

Scikit-learn库需要一些其他库的支持,如下:

  • Python (>= 2.6 or >= 3.3)
  • NumPy (>= 1.6.1)
  • SciPy (>= 0.9)

 

官网提供了几种安装方法,如可以

使用 pip

pip install -U scikit-learn

或 conda

conda install scikit-learn

对于没有安装过 NumPy、 SciPy等各种库的新手来说,最简单的方法是使用Anaconda软件(强烈推荐)

 

二、Anaconda安装过程

Anaconda官网:https://www.continuum.io/downloads

 

1、选择你所对应的平台和版本,我这里选择了Windows64位、python3.6

 

2、安装时有两个高级选项,第一个是把Anaconda加入path路径(系统环境变量)。第二个是将Anaconda作为默认的python3.6。

ps:如果你的电脑已经装了python,这里默认没有勾选

 

3、安装完毕后,能够在开始菜单看到安装的软件,已经集成了ipython、Jupyther notebook等

 

4、打开Anaconda Navigator (导航),在Environments(管理版本和包的)可以看到numpy, scipy, scikit-learn, matplotlib等库都已经安装好了

 

 

补充1:conda常用命令

conda常用命令:http://blog.csdn.net/tz_zs/article/details/76359844

 

补充2:python多版本环境的创建及切换

在Anaconda Navigator→Environments栏目下→点击create按钮创建python2.7的环境

1.

 

2.

 

3.

 

 

4.

Anaconda Navigator软件的2.7环境下安装运行spyder就是默认用的python2.7啦

注意新创建的2.7很多库是没有下载的,对比原来的环境(即root),重新下载库。

此外以上操作也可以使用命令行的方式达到同样的效果:Anaconda使用总结

 

补充3:添加国内源

清华大学开源软件镜像站提供了 Anaconda 仓库的镜像,貌似还就只有这一家

地址:http://mirrors.tuna.tsinghua.edu.cn/help/anaconda/

方法一:

打开Anaconda Prompt,输入以下命令即可添加

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

方法二:

打开Anaconda Navigator,点击channels,点击add添加

(一)

 

(二)

.

end

<think>好的,我现在需要帮助用户解决如何在Anaconda安装scikit-learn时指定国内镜像源的问题。首先,我要回忆Anaconda的基本操作和镜像配置的相关知识。用户可能已经知道通过conda安装包的基本命令,比如`conda install scikit-learn`,但问题是如何在安装时使用国内镜像加速,这通常是因为默认源下载速度慢或不稳定。 首先,我应该考虑配置Anaconda的镜像源。国内常用的镜像源有清华、中科大、阿里云等。配置镜像源有两种方式:临时使用和永久配置。临时使用的话,可以在安装命令中添加参数,比如`-c`指定通道的URL。而永久配置则需要修改conda的配置文件,这样以后每次安装都会自动使用镜像源,这对用户来说可能更方便。 接下来,我需要确认具体的命令。比如,清华镜像源的Anaconda地址是https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/。用户可以通过`conda config --add channels`命令添加这个通道。此外,可能还需要添加其他通道,比如conda-forge,但需要确保这些通道也有对应的镜像源。例如,清华也提供了conda-forge的镜像。 然后,我需要分步骤写出具体的操作流程。首先,配置镜像源,包括添加镜像通道和设置显示通道URL。然后,执行安装命令,这里需要注意是否要指定版本,用户的问题中没有提到版本,所以可以默认最新版。安装完成后,建议用户验证安装是否成功,比如通过`conda list scikit-learn`查看版本,或者导入sklearn检查。 另外,可能需要提醒用户些注意事项,比如镜像源是否可用,有时候镜像源可能同步不及时,导致某些包版本找不到。这时候可能需要切换回默认源或者尝试其他镜像源。此外,如果用户已经配置过其他镜像源,可能会有冲突,需要清理配置或者调整通道的优先级。 然后,我需要检查是否有相关的引用资料支持这些步骤。根据用户提供的引用,特别是引用[2]提到使用conda安装scikit-learn的命令,引用[4]提到通过conda安装的方法,以及引用[5]关于版本更新的部分,这些都可以作为支持。不过用户提供的引用中并没有直接提到镜像源的配置,所以需要依靠一般Anaconda知识来补充。 最后,生成相关问题的时候,应该围绕镜像源配置、安装验证、常见问题解决等方面展开,帮助用户进步了解可能遇到的问题和扩展知识。</think>### 通过Anaconda安装scikit-learn并配置国内镜像源的方法 #### 1. 配置Anaconda国内镜像源 国内镜像源(如清华、中科大、阿里云)可加速软件包下载: ```bash # 添加清华镜像源(推荐) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ # 设置安装时显示镜像源URL conda config --set show_channel_urls yes ``` #### 2. 使用镜像源安装scikit-learn 直接运行以下命令(镜像源已配置后自动生效): ```bash conda install scikit-learn ``` 若需指定版本(如1.2.2): ```bash conda install scikit-learn=1.2.2 ``` #### 3. 验证安装 ```bash conda list scikit-learn # 查看已安装版本 ``` 或在Python中验证: ```python import sklearn print(sklearn.__version__) ``` #### 4. 恢复默认源(可选) ```bash conda config --remove-key channels ``` #### 注意事项 1. 镜像源需定期更新,若安装失败可尝试切换其他镜像(如中科大、阿里云) 2. 清华镜像官方说明:[Anaconda 镜像使用帮助](https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值