这一周主要的学习内容涉及到了课程内容(泛函分析、矩阵论、微分流形、凸分析、拓扑学)和专业内容(继续看的两本书),下面简单地总结一下。
1. 课程内容
泛函分析:老师在前几周讲了实变函数的预备知识,但是开始都不懂实变函数讲的什么内容,这周用一天时间总算基本搞明白是做的什么东西。稍微列一下吧:
1. 集合(跟以前的内容差不太多,不过复习了德摩根定律,新认识了上下限集、集合的极限、对等、基数等),还了解了伯恩斯坦定理,同时比较重要的概念-可数集也在这张介绍了。具体的一些可数集[1.全体整数集 2.全体有理数之集 3.全体代数数之集 4.Rn中有理点之集],不可数集[R,任何区间、全体无理数之集、全体超越数之集,同时他们的基数都为c]);
2. 测度论(本章主要介绍外测度、可测集的概念,涉及到外测度的定义、性质,可测集的定义及判别条件,集合可测的充要条件及证明集合可测的一种常用的技巧-把一集合分解成一零测度集和一已知可测集的并或差);
3. 可测函数(主要涉及到三个方面的内容:可测函数概念及性质、可测函数的构造方法、依测度收敛,概念及函数主要介绍可测集和可测函数之间的关系,引出叶戈洛夫定理[处处收敛->一致收敛],鲁津定理使对可测函数的结构有了进一步的了解,它揭露了可测函数与连续函数的关系[可测->连续],依测度收敛定义了一种新的收敛方式,测度收敛而不处处不收敛的函数列是存在的,一个a.e.收敛的函数列也可以不是依测度收敛的,引出了黎斯定理[测度收敛->处处收敛]);
4. Lebesgue积分(首先回顾了黎曼积分,并了解了它的两种定义方式和振幅的概念[处处连续->振幅为0],以及从测度的观点建立的一个可积的条件[勒贝格提出],后面继续介绍分划的概念进而介绍Lebesgue积分,及它的判别条件及性质。下面就讨论了积分和极限的交换问题,这个问题在L积分范围内得到比在R积分范围内更加完美的解决,这也是L积分的最大成功之处,涉及到的定理有:勒贝格控制收敛定理、列维定理、L逐项积分定理、积分的可数可加性、Fatou引理,最后介绍了L积分的集合意义[Fubini定理]);
泛函分析的课程也上了几周了,本周主要介绍的是 列紧集、线性赋范空间,列紧集主要涉及到的概念有:列紧的、自列紧、列紧空间、列紧集、e网、完全有界、可分,介绍了完备与列紧的关系[Hausdorff定理]、完全有界与可分,老师上课的时候以对比的形式介绍了“有限覆盖定理”,{感觉老师挺有魅力的,小崇拜一下},线性赋范空间与线性空间对比,准范数定义为这个空间上的饿一个函数[范数],因此有F-空间、Banach空间[B-空间],后面介绍了线性赋范空间上的模等价关系,提出了强的概念,最后的最佳逼近问题和F.Riesz引理就没听明白了....
凸分析:老师在前面几节课已经讲了几个基本的概念,比如凸集(convex set)、凸函数(convex function)、凹函数(concave function)、水平集(level set)、拓广实值函数(extended real-valued convex functions)、下半连续(Lower Semicontinuity)与水平集的关系、仿射包(affine hulls)、超平面,以及内点和相对内点的概念,这周主要介绍了回收锥(Recession Cone)和回收方向(Directions of recession)的知识。
回收锥的相关理论关系到在凸优化问题的解的存在性的问题,定义如下: Given a nonempty convex set C,We say that a vector y is a direction of recession of C if x+alpa*y belongs to C for all x belongs to C and alpa bigger or equal to zero. Thus ,y is a direction of recession of C if starting at any x in C and going indefinitely along y, we never cross the relative boundary of C to points outside C. The set of all directions of recession is a cone containing the origin. 主要的性质有:1. 回收方向的定义中需要任意的C中的x,有那个不等式成立,但是实际上只需要其中存在一个x即可,这样可以简化证明 2. Rc 包含一个非零方向当且仅当C无界,也就是说有界集合一定只含有一个回收方向,就是零 方向 3.D是另一个闭凸集且有C和D的交不为空集,则 C和D的交的回收锥R(C|D)=Rc|Rd
矩阵论: 本周介绍的主题有:
1. Annihilating Polynomials of Matrices,特征多项式和最小多项式的内容,其中有一个Cayley-Hamilton定理比较重要;
2. Jordan Canonical Forms,Jordan Decomposition是重点;
3. The Matrices,介绍了一些特殊矩阵的相关运算及相似的一些东西。
拓扑学: 本周是第一次课,主要介绍了集合、映射及关系的一些性质,有一个划分的概念需要注意;
微分流行:纯粹属于听天书一样
2. 专业内容
本周基本上完成了两本书的学习,但是仍然有许多地方跳过去了,觉得是遗憾。
图像配准技术及其Matlab编程实现:这本书从暑假即开始看,现在基本上可以说看懂了,也经过了两次的讨论,对书中的一些错误的地方进行了修正和处理,我收获最大的估计还是我要讲的灰度级插值技术的那部分,对边缘检测、图像变换、及相似度的度量等方面进行了学习。
全书源码下载地址:http://download.csdn.net/detail/tzgj2007/3688419
图像处理疑难解析:这本书我觉得价值还是蛮大,以疑问的形式一步一步介绍领域知识,同时对于比较深一些的数学内容还进行了分开处理,有一些内容还是比较难,没有看懂;
全书PDF下载地址:http://download.csdn.net/detail/tzgj2007/3685774
部分总结下载地址:http://download.csdn.net/detail/tzgj2007/3685796
Gonzalez的数字图象处理(Matlab版):这本书还是比较经典,我觉得特色的地方在于跟另一本数字图像处理形成互相映衬的作用,这本书偏应用一些,对于理论不是介绍得那么全面(虽然如此,还是存在不明白的地方.....),最后观这本书,可能记得住的只是那些对于特殊算法开发的M函数了,所以最后还是总结了一下:
源码下载地址:http://download.csdn.net/detail/tzgj2007/3610983
函数汇总:http://blog.csdn.net/tzgj2007/article/details/6877800
这周下决心看好每本书,同时养成记录读后感的习惯,相信自己能做到~~