机器学习基础-条件随机场解析

1 概述

条件随机场模型(CRF)是Lafferty于2001年,在最大熵模型和隐马尔科夫模型的基础上,提出的一种判别式概率无向图学习模型,是一种用于标注和切分有序数据的条件概率模型。
CRF最早是针对序列数据分析提出的,现已成功应用于自然语言处理(Natural Language Processing, NLP)、 生物信息学、机器视觉及网络智能等领域。

与条件随机场相关的各模型之间的关系
在这里插入图片描述

2 马尔可夫过程

定义
假设一个随机过程中, t n t_n tn 时刻的状态 x n x_n xn 的条件发布,只与其前一状态 x n − 1 x_{n−1} xn1 相关,即:
P ( x n ∣ x 1 , x 2 , . . . , x n − 1 ) = P ( x n ∣ x n − 1 ) P(x_n|x_1,x_2,...,x_{n−1})=P(x_n|x_{n−1}) P(xnx1,x2,...,xn1)=P(xnxn1)
则将其称为 马尔可夫过程。
在这里插入图片描述

3 隐马尔科夫算法

定义
隐马尔科夫算法是对含有未知参数(隐状态)的马尔可夫链进行建模的生成模型,如下图所示:
在这里插入图片描述
在隐马尔科夫模型中,包含隐状态 和 观察状态,隐状态 x i x_i xi 对于观察者而言是不可见的,而观察状态 y i y_i yi 对于观察者而言是可见的。隐状态间存在转移概率,隐状态 x i x_i xi 到对应的观察状态 y i y_i yi 间存在输出概率。

假设

  1. 假设隐状态 x i x_i xi 的状态满足马尔可夫过程, i i i 时刻的状态 x i x_i xi 的条件分布,仅与其前一个状态 x i − 1 x_{i−1} xi1
    相关,即: P ( x i ∣ x 1 , x 2 , . . . , x i − 1 ) = P ( x i ∣ x i − 1 ) P(x_i|x_1,x_2,...,x_{i−1})=P(x_i|x_{i−1}) P(xix1,x2,...,xi1)=P(xixi1)
  2. 假设观测序列中各个状态仅取决于它所对应的隐状态,即: P ( y i ∣ x 1 , x 2 , . . . , x i − 1 , y 1 , y 2 , . . . , y i − 1 , y i + 1 , . . . ) = P ( y i ∣ x i ) P(y_i|x_1,x_2,...,x_{i−1},y_1,y_2,...,y_{i−1},y_{i+1},...)=P(y_i|x_i) P(yix1,x2,...,xi1,y1,y2,...,yi1,yi+1,...)=P(yixi)

存在问题
在序列标注问题中,隐状态(标注)不仅和单个观测状态相关,还和观察序列的长度、上下文等信息相关。例如词性标注问题中,一个词被标注为动词还是名词,不仅与它本身以及它前一个词的标注有关,还依赖于上下文中的其他词。

4 条件随机场 (以线性链条件随机场为例)

定义
给定 X = ( x 1 , x 2 , . . . , x n ) X=(x_1,x_2,...,x_n) X=(x1,x2,...,xn) Y = ( y 1 , y 2 , . . . , y n ) Y=(y_1,y_2,...,y_n) Y=(y1,y2,...,yn) 均为线性链表示的随机变量序列,若在给随机变量序列 X 的条件下,随机变量序列 Y 的条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX) 构成条件随机场,即满足马尔可夫性:
P ( y i ∣ x 1 , x 2 , . . . , x i − 1 , y 1 , y 2 , . . . , y i − 1 , y i + 1 ) = P ( y i ∣ x , y i − 1 , y i + 1 ) P(y_i|x_1,x_2,...,x_{i−1},y_1,y_2,...,y_{i−1},y_{i+1})=P(y_i|x,y_{i−1},y_{i+1}) P(yix1,x2,...,xi1,y1,y2,...,yi1,yi+1)=P(yix,yi1,yi+1)

则称为 P(Y|X) 为线性链条件随机场。

通过去除了隐马尔科夫算法中的观测状态相互独立假设,使算法在计算当前隐状态 x i x_i xi 时,会考虑整个观测序列,从而获得更高的表达能力,并进行全局归一化解决标注偏置问题。
在这里插入图片描述

参数化形式
在这里插入图片描述
其中: Z ( x ) Z(x) Z(x) 为归一化因子,是在全局范围进行归一化,枚举了整个隐状态序列 x 1 … n x_{1…n} x1n的全部可能,从而解决了局部归一化带来的标注偏置问题。
在这里插入图片描述
t k t_k tk 为定义在边上的特征函数,转移特征,依赖于前一个和当前位置
s 1 s_1 s1 为定义在节点上的特征函数,状态特征,依赖于当前位置。

简化形式
因为条件随机场中同一特征在各个位置都有定义,所以可以对同一个特征在各个位置求和,将局部特征函数转化为一个全局特征函数,这样就可以将条件随机场写成权值向量和特征向量的内积形式,即条件随机场的简化形式。

step 1
将转移特征和状态特征及其权值用统一的符号表示,设有 k 1 k_1 k1个转移特征, k 2 k_2 k2 个状态特征, K = k 1 + k 2 K=k_1+k_2 K=k1+k2 ,记
在这里插入图片描述
step 2
对转移与状态特征在各个位置i求和,记作
在这里插入图片描述
step 3
λ x λ_x λx μ l μ_l μl 用统一的权重表示,记作
在这里插入图片描述
step 4
转化后的条件随机场可表示为:
在这里插入图片描述
step 5
若 ww 表示权重向量:
w = ( w 1 , w 2 , . . . , w K ) T w=(w_1,w_2,...,w_K)^T w=(w1,w2,...,wK)T
F ( y , x ) F(y,x) F(y,x) 表示特征向量,即
在这里插入图片描述
则,条件随机场写成内积形式为:
在这里插入图片描述

基本问题
条件随机场包含概率计算问题、学习问题和预测问题三个问题。

  1. 概率计算问题:已知模型的所有参数,计算观测序列 Y Y Y出现的概率,常用方法:前向和后向算法;
  2. 学习问题:已知观测序列 Y Y Y ,求解使得该观测序列概率最大的模型参数,包括隐状态序列、隐状态间的转移概率分布和从隐状态到观测状态的概率分布,常用方法:Baum-Wehch算法;
  3. 预测问题:已知模型所有参数和观测序列 Y Y Y ,计算最可能的隐状态序列 X X X,常用算法:维特比算法。

概率计算问题
给定条件随机场 P ( Y ∣ X ) P(Y|X) P(YX) ,输入序列 x x x 和 输出序列 y y y ;
计算条件概率
P ( Y i = y i ∣ x ) , P ( Y i − 1 = y i − 1 , Y i = y i ∣ x ) P(Y_i=y_i|x),P(Y_{i−1}=y_{i−1},Y_i=y_i|x) P(Yi=yix),P(Yi1=yi1,Yi=yix)
计算相应的数学期望问题;

前向-后向算法
step 1 前向计算
对观测序列 x x x 的每个位置 i = 1 , 2 , . . . , n + 1 i=1,2,...,n+1 i=1,2,...,n+1,定义一个 m 阶矩阵( m 为标记 Y i Y_i Yi 取值的个数)
在这里插入图片描述
对每个指标 i = 0 , 1 , . . . , n + 1 i=0,1,...,n+1 i=0,1,...,n+1,定义前向向量 α i ( x ) \alpha_i(x) αi(x),则递推公式:
在这里插入图片描述
其中,
在这里插入图片描述
step 2 后向计算
对每个指标 i = 0 , 1 , . . . , n + 1 i=0,1,...,n+1 i=0,1,...,n+1,定义前向向量 β i ( x ) \beta_i(x) βi(x) ,则递推公式:
在这里插入图片描述
在这里插入图片描述
step 3
在这里插入图片描述
step 4 概率计算
所以,标注序列在位置 i i i 是标注 y i y_i yi 的条件概率为:
在这里插入图片描述
在这里插入图片描述
其中,
在这里插入图片描述
step 5 期望值计算
通过利用前向-后向向量,计算特征函数关于联合概率分布 P ( X , Y ) P(X,Y) P(X,Y) 和 条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX) 的数学期望,即特征函数 f k f_k fk 关于条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX) 的数学期望:
在这里插入图片描述
其中:
在这里插入图片描述

学习问题
这里主要介绍一下 BFGS 算法的思路。

输入:特征函数 f 1 , f 2 , . . . , f n f_1,f_2,...,f_n f1,f2,...,fn :经验分布 P ˉ ( X , Y ) \bar P_(X,Y) Pˉ(X,Y)

输出:最优参数值 w ^ \hat w w^ ,最优模型 P w ^ ( y ∣ x ) P_{\hat w}(y|x) Pw^(yx)

  1. 选定初始点 w ^ ( 0 ) \hat w^{(0)} w^(0), 取 B 0 B_0 B0 为正定对称矩阵,k = 0;
  2. 计算 g k = g ( w ( k ) ) g_k=g(w^{(k)}) gk=g(w(k)) ,若 g k = 0 g_k=0 gk=0 ,则停止计算,否则转(3) ;
  3. 利用 Bkpk=−gkBkpk=−gk 计算 pkpk ;
  4. 一维搜索:求 λ k λ_k λk 使得
    在这里插入图片描述
  5. w ( k + 1 ) = w ( k ) + λ k ∗ p k w^{(k+1)}=w^{(k)}+λ_k∗p_k w(k+1)=w(k)+λkpk
  6. 计算 g k + 1 = g ( w ( k + 1 ) ) g_{k+1} = g(w^{(k+1)}) gk+1=g(w(k+1))
    g k = 0 g_k=0 gk=0 , 则停止计算;否则,利用下面公式计算 B k + 1 B_{k+1} Bk+1 :
    在这里插入图片描述
  7. k = k + 1 k=k+1 k=k+1 ,转步骤(3);

预测问题
对于预测问题,常用的方法是维特比算法,其思路如下:

输入:模型特征向量 F ( y , x ) F(y,x) F(y,x) 和权重向量 w w w ,输入序列(观测序列) x = x 1 , x 2 , . . . , x n x=x_1,x_2,...,x_n x=x1,x2,...,xn

输出:条件概率最大的输出序列(标记序列) y ∗ = ( y 1 ∗ , y 2 ∗ , . . . , y n ∗ ) y^∗=(y^∗_1,y^∗_2,...,y^∗_n) y=(y1,y2,...,yn) ,也就是最优路径;

  1. 初始化在这里插入图片描述
  2. 递推,对$ i=2,3,…,n$在这里插入图片描述
  3. 终止在这里插入图片描述
  4. 返回路径在这里插入图片描述
    求得最优路径 y ∗ = ( y 1 ∗ , y 2 ∗ , . . . , y n ∗ ) y^∗=(y^∗_1,y^∗_2,...,y^∗_n) y=(y1,y2,...,yn)

例子说明
利用维特比算法计算给定输入序列 x x x 对应的最优输出序列 y ∗ y^∗ y在这里插入图片描述

  1. 初始化在这里插入图片描述
  2. 递推,对 i = 2 , 3 , . . . , n i=2,3,...,n i=2,3,...,n在这里插入图片描述
    在这里插入图片描述
  3. 终止在这里插入图片描述
  4. 返回路径在这里插入图片描述

求得最优路径 y ∗ = ( y 1 ∗ , y 2 ∗ , . . . , y n ∗ ) = ( 1 , 2 , 1 ) y^∗=(y_1^∗,y_2^∗,...,y_n^∗)=(1,2,1) y=(y1,y2,...,yn)=(1,2,1)

import numpy as np
 
class CRF(object):
    '''实现条件随机场预测问题的维特比算法
    '''
    def __init__(self, V, VW, E, EW):
        '''
        :param V:是定义在节点上的特征函数,称为状态特征
        :param VW:是V对应的权值
        :param E:是定义在边上的特征函数,称为转移特征
        :param EW:是E对应的权值
        '''
        self.V  = V  #点分布表
        self.VW = VW #点权值表
        self.E  = E  #边分布表
        self.EW = EW #边权值表
        self.D  = [] #Delta表,最大非规范化概率的局部状态路径概率
        self.P  = [] #Psi表,当前状态和最优前导状态的索引表s
        self.BP = [] #BestPath,最优路径
        return 
        
    def Viterbi(self):
        '''
        条件随机场预测问题的维特比算法,此算法一定要结合CRF参数化形式对应的状态路径图来理解,更容易理解.
        '''
        self.D = np.full(shape=(np.shape(self.V)), fill_value=.0)
        self.P = np.full(shape=(np.shape(self.V)), fill_value=.0)
        for i in range(np.shape(self.V)[0]):
            #初始化
            if 0 == i:
                self.D[i] = np.multiply(self.V[i], self.VW[i])
                self.P[i] = np.array([0, 0])
                print('self.V[%d]='%i, self.V[i], 'self.VW[%d]='%i, self.VW[i], 'self.D[%d]='%i, self.D[i])
                print('self.P:', self.P)
                pass
            #递推求解布局最优状态路径
            else:
                for y in range(np.shape(self.V)[1]): #delta[i][y=1,2...]
                    for l in range(np.shape(self.V)[1]): #V[i-1][l=1,2...]
                        delta = 0.0
                        delta += self.D[i-1, l]                      #前导状态的最优状态路径的概率
                        delta += self.E[i-1][l,y]*self.EW[i-1][l,y]  #前导状态到当前状体的转移概率
                        delta += self.V[i,y]*self.VW[i,y]            #当前状态的概率
                        print('(x%d,y=%d)-->(x%d,y=%d):%.2f + %.2f + %.2f='%(i-1, l, i, y, \
                              self.D[i-1, l], \
                              self.E[i-1][l,y]*self.EW[i-1][l,y], \
                              self.V[i,y]*self.VW[i,y]), delta)
                        if 0 == l or delta > self.D[i, y]:
                            self.D[i, y] = delta
                            self.P[i, y] = l
                    print('self.D[x%d,y=%d]=%.2f\n'%(i, y, self.D[i,y]))
        print('self.Delta:\n', self.D)
        print('self.Psi:\n', self.P)
        
        #返回,得到所有的最优前导状态
        N = np.shape(self.V)[0]
        self.BP = np.full(shape=(N,), fill_value=0.0)
        t_range = -1 * np.array(sorted(-1*np.arange(N)))
        for t in t_range:
            if N-1 == t:#得到最优状态
                self.BP[t] = np.argmax(self.D[-1])
            else: #得到最优前导状态
                self.BP[t] = self.P[t+1, int(self.BP[t+1])]
        
        #最优状态路径表现在存储的是状态的下标,我们执行存储值+1转换成示例中的状态值
        #也可以不用转换,只要你能理解,self.BP中存储的0是状态1就可以~~~~
        self.BP += 1
        
        print('最优状态路径为:', self.BP)
        return self.BP
        
def CRF_manual():   
    S = np.array([[1,1],   #X1:S(Y1=1), S(Y1=2)
                  [1,1],   #X2:S(Y2=1), S(Y2=2)
                  [1,1]])  #X3:S(Y3=1), S(Y3=1)
    SW = np.array([[1.0, 0.5], #X1:SW(Y1=1), SW(Y1=2)
                   [0.8, 0.5], #X2:SW(Y2=1), SW(Y2=2)
                   [0.8, 0.5]])#X3:SW(Y3=1), SW(Y3=1)
    E = np.array([[[1, 1],  #Edge:Y1=1--->(Y2=1, Y2=2)
                   [1, 0]], #Edge:Y1=2--->(Y2=1, Y2=2)
                  [[0, 1],  #Edge:Y2=1--->(Y3=1, Y3=2) 
                   [1, 1]]])#Edge:Y2=2--->(Y3=1, Y3=2)
    EW= np.array([[[0.6, 1],  #EdgeW:Y1=1--->(Y2=1, Y2=2)
                   [1, 0.0]], #EdgeW:Y1=2--->(Y2=1, Y2=2)
                  [[0.0, 1],  #EdgeW:Y2=1--->(Y3=1, Y3=2)
                   [1, 0.2]]])#EdgeW:Y2=2--->(Y3=1, Y3=2)
    
    crf = CRF(S, SW, E, EW)
    ret = crf.Viterbi()
    print('最优状态路径为:', ret)
    return
    
if __name__=='__main__':
    CRF_manual()
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值