poj2533——longest ordered subsequence

题目大意:找出最长上升子序列LIS的长度

输入:原序列长度n

            原序列数字

输出:LIS长度

分析:动态规划

            状态dp[i]:以i结尾的最长上升子序列长度

            结果:max{dp[i]}

            初始化边界:dp[0]=0

            状态转移方程:dp[i]=max{dp[i],dp[j]+1},j<i,a[j]<a[i]

代码:

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

int a[1005];
int dp[1005];
int n;

int main()
{
    cin >> n;
    for(int i = 1;i <= n;i++){
        cin >> a[i];
    }
    for(int i = 1;i <= n;i++){
        dp[i] = 1;
        for(int j = 1;j < i;j++){
            if(a[j] < a[i])
                dp[i] = max(dp[i],dp[j] + 1);
        }
    }
    int lis = 1;
    for(int i = 1;i <= n;i++){
        lis = max(lis,dp[i]);
    }
    cout << lis << endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值