题目大意:给出N种车牌的编号,每个编号由七位小写字母组成,一种车牌从另一种车牌衍生而来,衍生的代价就是两个车牌编号中不同字母的个数,问总代价最少是多少
输入:(可以有很多case,输入以0结束)
N
第i种类型编码(共N行)
0
输出:The highest possible quality is 1/最小总代价.
分析:最小生成树的应用。每个车牌号是一个结点,节点之间的距离就是衍生代价,也就是两个节点中不同字母的个数,让总代价最小就是求出最小生成树。
prim算法适合稠密图,krustal算法适合稀疏图。本题是稠密图。
代码:转载自http://blog.sina.com.cn/s/blog_7009066601012hrk.html
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
const int inf=0x7f7f7f7f;
const int V=2005;
char tmp[V][8];
int dist(int i,int j){
int ans=0;
for(int k=0;k<7;k++){
if(tmp[i][k]!=tmp[j][k])ans++;
}
return ans;
}
bool vis[3000];
int dis[V];
int main(){
int n;
while(scanf("%d",&n),n){
memset(vis,0,sizeof(vis));
int ans=0;
for(int i=0;i<n;i++){
scanf("%s",tmp[i]);
}
dis[0]=0;
vis[0]=1;
for(int i=0;i<n;i++){
dis[i]=dist(0,i); //初始化dis[]数组为其他车牌到第一个车牌的距离
}
for(int i=0;i<n-1;i++){
int td = inf,ti;
for(int j=0;j<n;j++){
if(!vis[j]&&dis[j]<td){
ti=j;
td=dis[j];
}
}
ans+=td;
vis[ti]=1;
for(int j=0;j<n;j++){
if(!vis[j]&&(td=dist(j,ti))<dis[j]){
dis[j]=td;
}
}
}
printf("The highest possible quality is 1/%d.\n",ans);
}
return 0;
}